cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322557 Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.

This page as a plain text file.
%I A322557 #75 Sep 03 2019 16:53:59
%S A322557 7,23,600,1611,10307,359863,1461054,17819245,266012440,1619092245,
%T A322557 10634761313,97509078554,1203836807622,10241799698090,294871290395291,
%U A322557 4004525174270251,24827457879988026,112840588371964574,2064072875704476882,15243903003939891921
%N A322557 Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.
%C A322557 6*A007406(k)/A007407(k) = Sum_{m=1..k} 6/m^2.
%C A322557 It seems nearly certain that, for all n >= 0, a(n) = ceiling(z - 1/2 - 1/(12*z)) where z = 6/(Pi^2 - (floor(Pi*10^n)/10^n)^2). - _Jon E. Schoenfield_, Aug 31 2019
%H A322557 Zachary Russ, <a href="https://www.desmos.com/calculator/jdnvwymx9p">Klarice Sequence</a>
%H A322557 Jon E. Schoenfield, <a href="/A322557/a322557.txt">Magma program</a>
%e A322557 floor((10^0)*sqrt(Sum_{m=1..7} 6/m^2)) = 3.
%e A322557 floor((10^1)*sqrt(Sum_{m=1..23} 6/m^2)) = 31.
%e A322557 floor((10^2)*sqrt(Sum_{m=1..600} 6/m^2)) = 314.
%e A322557 floor((10^3)*sqrt(Sum_{m=1..1611} 6/m^2)) = 3141.
%e A322557 floor((10^4)*sqrt(Sum_{m=1..10307} 6/m^2)) = 31415.
%e A322557 floor((10^5)*sqrt(Sum_{m=1..359863} 6/m^2)) = 314159.
%o A322557 (PARI) a(n) = {my(k = 1); t = floor(10^(n)*Pi); while(floor(10^(n)*sqrt(sum(m = 1, k, 6/m^2))) != t, k++); k; } \\ _Jinyuan Wang_, Aug 30 2019
%Y A322557 Cf. A000796, A013661, A013679, A002388, A274982, A007406, A007407.
%Y A322557 Cf. A011545 (floor(Pi*10^n)).
%K A322557 nonn,base
%O A322557 0,1
%A A322557 _Zachary Russ_, Aug 28 2019
%E A322557 a(6)-a(19) from _Jon E. Schoenfield_, Aug 31 2019