This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322559 #11 Aug 29 2019 10:41:13 %S A322559 0,6,244,4290,43594,461199,6140627,344066593,6088808015,54919110102, %T A322559 292094863096,30532003369831,544610447984326,6953455057511697, %U A322559 56476345222041382,1066743304578446956,21103704665147157507,118426088416480894469,11699789754825195592947 %N A322559 One of the two successive approximations up to 17^n for 17-adic integer sqrt(2). This is the 6 (mod 17) case (except for n = 0). %C A322559 For n > 0, a(n) is the unique solution to x^2 == 2 (mod 17^n) in the range [0, 17^n - 1] and congruent to 6 modulo 17. %C A322559 A322560 is the approximation (congruent to 11 mod 17) of another square root of 2 over the 17-adic field. %H A322559 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A322559 For n > 0, a(n) = 17^n - A322560(n). %F A322559 a(n) = Sum_{i=0..n-1} A322561(i)*17^i. %F A322559 a(n) = A286877(n)*A322564(n) mod 17^n = A286878(n)*A322563(n) mod 17^n. %e A322559 6^2 = 36 = 2*17 + 2; %e A322559 244^2 = 59536 = 206*17^2 + 2; %e A322559 4290^2 = 18404100 = 3746*17^3 + 2. %o A322559 (PARI) a(n) = truncate(sqrt(2+O(17^n))) %Y A322559 Cf. A322561, A322562. %Y A322559 Approximations of 17-adic square roots: %Y A322559 A286877, A286878 (sqrt(-1)); %Y A322559 this sequence, A322560 (sqrt(2)); %Y A322559 A322563, A322564 (sqrt(-2)). %K A322559 nonn %O A322559 0,2 %A A322559 _Jianing Song_, Aug 29 2019