cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322560 One of the two successive approximations up to 17^n for 17-adic integer sqrt(2). This is the 11 (mod 17) case (except for n = 0).

This page as a plain text file.
%I A322560 #11 Aug 29 2019 10:41:26
%S A322560 0,11,45,623,39927,958658,17996942,66272080,886949426,63668766395,
%T A322560 1723899037353,3739892937802,38011789245435,2951122975394240,
%U A322560 111901481337359547,1795679746931368837,27557487210519710974,708814173469855869708,2363294697242529398062
%N A322560 One of the two successive approximations up to 17^n for 17-adic integer sqrt(2). This is the 11 (mod 17) case (except for n = 0).
%C A322560 For n > 0, a(n) is the unique solution to x^2 == 2 (mod 17^n) in the range [0, 17^n - 1] and congruent to 11 modulo 17.
%C A322560 A322559 is the approximation (congruent to 6 mod 17) of another square root of 2 over the 17-adic field.
%H A322560 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a>
%F A322560 For n > 0, a(n) = 17^n - A322559(n).
%F A322560 a(n) = Sum_{i=0..n-1} A322562(i)*17^i.
%F A322560 a(n) = A286877(n)*A322563(n) mod 17^n = A286878(n)*A322564(n) mod 17^n.
%e A322560 11^2 = 121 = 7*17 + 2;
%e A322560 45^2 = 2025 = 7*17^2 + 2;
%e A322560 623^2 = 388129 = 79*17^3 + 2.
%o A322560 (PARI) a(n) = truncate(-sqrt(2+O(17^n)))
%Y A322560 Cf. A322561, A322562.
%Y A322560 Approximations of 17-adic square roots:
%Y A322560 A286877, A286878 (sqrt(-1));
%Y A322560 A322559, this sequence (sqrt(2));
%Y A322560 A322563, A322564 (sqrt(-2)).
%K A322560 nonn
%O A322560 0,2
%A A322560 _Jianing Song_, Aug 29 2019