This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322564 #14 Mar 26 2022 17:46:37 %S A322564 0,10,265,1421,80029,664676,23382388,23382388,3306091772,80039423623, %T A322564 80039423623,4112027224521,552462368146649,9291795926593064, %U A322564 19196373959499001,861085506756503646,861085506756503646,49522277382423372127,6667444372473117485543,48856697728676292458570,287929133413827617305723 %N A322564 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-2). This is the 10 (mod 17) case (except for n = 0). %C A322564 For n > 0, a(n) is the unique solution to x^2 == 2 (mod 17^n) in the range [0, 17^n - 1] and congruent to 10 modulo 17. %C A322564 A322563 is the approximation (congruent to 7 mod 17) of another square root of -2 over the 17-adic field. %H A322564 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A322564 For n > 0, a(n) = 17^n - A322563(n). %F A322564 a(n) = Sum_{i=0..n-1} A322566(i)*17^i. %F A322564 a(n) = A286877(n)*A322560(n) mod 17^n = A286878(n)*A322559(n) mod 17^n. %e A322564 10^2 = 100 = 6*17 - 2; %e A322564 265^2 = 70225 = 243*17^2 - 2; %e A322564 1421^2 = 2019241 = 411*17^3 - 2. %o A322564 (PARI) a(n) = truncate(-sqrt(-2+O(17^n))) %Y A322564 Cf. A322565, A322566. %Y A322564 Approximations of 17-adic square roots: %Y A322564 A286877, A286878 (sqrt(-1)); %Y A322564 A322559, A322560 (sqrt(2)); %Y A322564 A322563, this sequence (sqrt(-2)). %K A322564 nonn %O A322564 0,2 %A A322564 _Jianing Song_, Aug 29 2019