A322573 G.f. = g(f(x)), where f(x) = g.f. of Fibonacci sequence A000045 and g(x) = g.f. of Jacobsthal sequence A001045.
0, 1, 2, 7, 22, 73, 240, 793, 2618, 8647, 28558, 94321, 311520, 1028881, 3398162, 11223367, 37068262, 122428153, 404352720, 1335486313, 4410811658, 14567921287, 48114575518, 158911647841, 524849519040, 1733460204961, 5725230133922, 18909150606727, 62452681954102, 206267196469033
Offset: 0
Keywords
Links
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Index entries for linear recurrences with constant coefficients, signature (3,2,-3,-1).
Programs
-
Maple
g:=x->x/(1-x-2*x^2): f:=x->x/(1-x-x^2): C:=n->coeff(series(g(f(x)),x,n+1),x,n): seq(C(n),n=0..30);
-
Mathematica
LinearRecurrence[{3, 2, -3, -1}, {0, 1, 2, 7}, 30] (* Jean-François Alcover, Nov 10 2019 *)
Formula
G.f.: x*(1-x-x^2)/((1-3*x-x^2)*(1-x^2)).
a(n) = 3a(n-1)+2a(n-2)-3a(n-3)-a(n-4), a(0)=0, a(1)=1, a(2)=2, a(3)=7.
Extensions
Edited by N. J. A. Sloane, Sep 23 2019