A322575 z(1) = 0, and for any n > 0, z(4*n-2) = z(n) + k(n), z(4*n-1) = z(n) + i*k(n), z(4*n) = z(n) - k(n) and z(4*n+1) = z(n) - i*k(n) where k(n) is the least positive integer not leading to a duplicate term in sequence z (and i denotes the imaginary unit); a(n) is the imaginary part of z(n).
0, 0, 1, 0, -1, 0, 3, 0, -3, 1, 4, 1, -2, 0, 3, 0, -3, -1, 2, -1, -4, 0, 1, 0, -1, 3, 4, 3, 2, 0, 8, 0, -8, -3, -2, -3, -4, 1, 5, 1, -3, 4, 13, 4, -5, 1, 2, 1, 0, -2, 5, -2, -9, 0, 7, 0, -7, 3, 7, 3, -1, 0, 11, 0, -11, -3, 2, -3, -8, -1, 4, -1, -6, 2, 10, 2
Offset: 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A322575
Crossrefs
See A322574 for the real part of z and additional comments.
Programs
-
PARI
\\ See Links section.