This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322597 #7 Jan 24 2019 05:49:26 %S A322597 1,7,17,39,81,151,257,407,609,871,1201,1607,2097,2679,3361,4151,5057, %T A322597 6087,7249,8551,10001,11607,13377,15319,17441,19751,22257,24967,27889, %U A322597 31031,34401,38007,41857,45959,50321,54951,59857,65047,70529,76311,82401,88807 %N A322597 a(n) = (4*n^3 - 6*n^2 + 20*n + 3)/3. %C A322597 For n >= 2, a(n) gives the number of function evaluations for Dooren and Ridder's degree 5 and 7 cubature rule over an n-dimensional cube, with the exception of a(3) = 45 and a(4) = 97. %H A322597 Ronald Cools, <a href="http://nines.cs.kuleuven.be/ecf/">Encyclopaedia of Cubature Formulas</a> %H A322597 Paul van Dooren and Luc de Ridder, <a href="https://doi.org/10.1016/0771-050X(76)90005-X">An adaptive algorithm for numerical integration over an n-dimensional cube</a>, Journal of Computational and Applied Mathematics, Vol. 2 (1976), 207-217. %H A322597 Alan C. Genz and Awais A. Malik, <a href="https://doi.org/10.1016/0771-050X(80)90039-X">Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region</a>, Journal of Computational and Applied Mathematics, Vol. 6 (1980), 295-302. %H A322597 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A322597 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4. %F A322597 G.f.: (1 + 3*x - 5*x^2 + 9*x^3)/((1 - x)^4). %F A322597 E.g.f.: (1/3)*(3 + 18*x + 6*x^2 + 4*x^3)*exp(x). %p A322597 [(4*n^3-6*n^2+20*n+3)/3$n=0..50]; # _Muniru A Asiru_, Jan 23 2019 %t A322597 Table[(4*n^3 - 6*n^2 + 20*n + 3)/3, {n, 0, 50}] %o A322597 (Maxima) makelist((4*n^3 - 6*n^2 + 20*n + 3)/3, n, 0, 50); %Y A322597 First differences: 2*A093328. %Y A322597 Cf. A174794, A321124, A322594, A322595. %K A322597 nonn,easy %O A322597 0,2 %A A322597 _Franck Maminirina Ramaharo_, Jan 23 2019