A322605 Numbers k such that all k - u are Ulam numbers (A002858) where u is an Ulam number in the range k/2 <= u < k.
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 19, 24, 29, 34, 39, 44
Offset: 1
Examples
a(10)=12, because the Ulam numbers u in the range 6 <= u < 12 are {6, 8, 11}. Also the complementary set {6, 4, 1} has all its members Ulam numbers. This is the 10th occurrence of such a number.
Links
- Mehdi Hage-Hassan, An elementary introduction to Quantum mechanic, hal-00879586 2013 pp 58.
Programs
-
Mathematica
Ulam[n_] := Module[{ulams={1, 2}, p}, Do[AppendTo[ulams, p=Last[ulams]; While[p++; Length[DeleteCases[Intersection[ulams, p-ulams], p/2, 1, 1]]!=2]; p], {n-2}]; ulams]; ulst=Ulam[1000]; plst[n_] := Select[ulst, Ceiling[n/2]<=#
Comments