This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322613 #6 Dec 21 2018 03:35:18 %S A322613 1,0,2,9,44,370,3084,32088,336384,4407408,59113440,896773680, %T A322613 14403234240,250498939392,4625127900288,92232410538240, %U A322613 1925532322237440,42709138254167040,997150775080043520,24416143271431649280,626110124433676185600,16824255461119247339520,471015493365385119191040 %N A322613 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x)*x^k). %F A322613 E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(d+1)*log(1/(1 - x))^d/d ) * x^k). %p A322613 seq(coeff(series(factorial(n)*mul((1-log(1-x)*x^k),k=1..n),x,n+1), x, n), n = 0 .. 22); # _Muniru A Asiru_, Dec 21 2018 %t A322613 nmax = 22; CoefficientList[Series[Product[(1 - Log[1 - x] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! %t A322613 nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(d + 1) Log[1/(1 - x)]^d/d, {d, Divisors[k]}] x^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! %Y A322613 Cf. A126348, A265952, A322612. %K A322613 nonn %O A322613 0,3 %A A322613 _Ilya Gutkovskiy_, Dec 20 2018