This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322623 #15 Dec 06 2019 21:45:12 %S A322623 1,2,4,14,64,362,2464,19574,177664,1814162,20583424,256891934, %T A322623 3497611264,51588733562,819450793984,13946142745094,253171058212864, %U A322623 4883182404118562,99727612182790144,2149854113300939054,48784173816258494464,1162353473295706049162,29013549746780744187904,757126891483681641073814,20616734677807356197208064,584789894473832421848925362 %N A322623 E.g.f.: (1 + sinh(x)) / (1 - sinh(x)). %C A322623 Equals the antidiagonal sums of square table A322620. %C A322623 a(n) = 2*A006154(n) for n >= 1. %H A322623 Robert Israel, <a href="/A322623/b322623.txt">Table of n, a(n) for n = 0..440</a> %F A322623 a(n) = Sum_{k=0..n} A322620(n-k,k), for n >= 0. %F A322623 a(n) ~ sqrt(2)*n!/log(1+sqrt(2))^(n+1). - _Robert Israel_, Dec 31 2018 %e A322623 E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 64*x^4/4! + 362*x^5/5! + 2464*x^6/6! + 19574*x^7/7! + 177664*x^8/8! + 1814162*x^9/9! + ... %e A322623 where %e A322623 A(x) = 1 + 2*sinh(x) + 2*sinh(x)^2 + 2*sinh(x)^3 + 2*sinh(x)^4 + ... %p A322623 S:= series((1+sinh(x))/(1-sinh(x)),x,51): %p A322623 seq(coeff(S,x,j)*j!,j=0..50); # _Robert Israel_, Dec 31 2018 %o A322623 (PARI) {a(n) = my(X = x +x*O(x^n)); n! * polcoeff( (1 + sinh(X)) / (1 - sinh(X)),n)} %o A322623 for(n=0,30, print1(a(n),", ")) %Y A322623 Cf. A322620, A012261, A006154. %K A322623 nonn %O A322623 0,2 %A A322623 _Paul D. Hanna_, Dec 29 2018