This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322628 #44 Mar 19 2023 13:54:04 %S A322628 0,0,1,19,279,3671,45431,540639,6260959,71068951,794428551,8773216559, %T A322628 95937737039,1040604153831,11210103801271,120060433858879, %U A322628 1279394234787519,13573881914016311,143459424905375591,1511020367139739599,15866744246492020399 %N A322628 Number of n-digit decimal numbers containing a fixed 2-digit integer with distinct digits as a substring. %C A322628 First differences of A322052. - _Jon E. Schoenfield_, Jul 31 2021 %C A322628 See A138288 for the number of n-digit decimal numbers that do not contain a fixed 2-digit integer with distinct digits as a substring. %H A322628 Colin Barker, <a href="/A322628/b322628.txt">Table of n, a(n) for n = 0..500</a> %H A322628 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (20,-101,10). %F A322628 a(n) = 10*a(n-1) - a(n-2) + 9*10^(n-3) with a(0) = a(1) = 0, a(2) = 1. %F A322628 G.f.: x^2*(x-1)/((10*x-1)*(x^2-10*x+1)). - _Alois P. Heinz_, Dec 20 2018 %F A322628 a(n) = (27*10^n + 5*(5-2*sqrt(6))^n*(-3+sqrt(6)) - 5*(3+sqrt(6))*(5+2*sqrt(6))^n) / 30 for n>0. - _Colin Barker_, Dec 21 2018 %p A322628 seq(coeff(series(x^2*(x-1)/((10*x-1)*(x^2-10*x+1)),x,n+1), x, n), n = 0 .. 20); # _Muniru A Asiru_, Dec 21 2018 %o A322628 (Python) %o A322628 def find_int(i): %o A322628 if i == 0: return (0) %o A322628 intlist = [0,1,19] %o A322628 for n in range(4,i+2): %o A322628 if n > 3: %o A322628 a = 10*(intlist[n-2])+(9*10**(n-3)-intlist[n-3]) %o A322628 intlist.append(a) %o A322628 return (intlist[i-1]) %o A322628 for i in range(100): %o A322628 print(find_int(i), end=', ') %o A322628 (PARI) concat([0,0], Vec(x^2*(x-1)/((10*x-1)*(x^2-10*x+1)) + O(x^30))) \\ _Colin Barker_, Dec 21 2018 %o A322628 (GAP) a:=[0,1,19];; for n in [4..20] do a[n]:=20*a[n-1]-101*a[n-2]+10*a[n-3]; od; Concatenation([0],a); # _Muniru A Asiru_, Dec 21 2018 %Y A322628 Cf. A255372, A138288, A322052, A004189. %K A322628 nonn,base,easy %O A322628 0,4 %A A322628 _Owen M Sheff_, Dec 20 2018