cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322631 a(n) = 2*binomial(7*n-1,2*n)/(7*n-1).

This page as a plain text file.
%I A322631 #24 Jan 08 2025 11:14:22
%S A322631 5,110,3876,164450,7713420,385300240,20096692635,1081790956890,
%T A322631 59647783837425,3351648108957720,191230475831922200,
%U A322631 11049110585626417200,645189590847792998601,38014810319396501088720,2257261555792984515847380,134939208350635886836436490
%N A322631 a(n) = 2*binomial(7*n-1,2*n)/(7*n-1).
%C A322631 In 2012, Nakamigawa and Tokushige stated: Let A[x,y] = number of lattice paths starting at (0,0) that stay in y < 2*x/5 + 2/5 and B[x,y] = number of lattice paths starting at (0,0) that stay in y < 2*x/5 + 1/5, then a(t) = A[5*t-1,2*t-1] + B[5*t-1,2*t-1]. Their theorem was mentioned by D. Knuth in Problem 4 "Lattice Paths of Slope 2/5" in his lecture "Problems That Philippe (Flajolet) Would Have Loved". Knuth reported the empirical observation that A[5*t-1,2*t-1]/B[5*t-1,2*t-1] = a - b/t + O(t^-2), with constants a~=1.63026 and b~=0.159. Knuth's conjecture was proved by C. Banderier and M. Wallner, who also found the exact values of a and b. Numerical values of a and b are provided in A322632 and A322633.
%H A322631 Robert Israel, <a href="/A322631/b322631.txt">Table of n, a(n) for n = 1..552</a>
%H A322631 Cyril Banderier, Michael Wallner, <a href="https://arxiv.org/abs/1605.02967">Lattice paths of slope 2/5</a>, arXiv:1605.02967 [cs.DM], 10 May 2016.
%H A322631 D. E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf">Problems That Philippe Would Have Loved</a>, Paris 2014.
%H A322631 Tomoki Nakamigawa, Norihide Tokushige, <a href="https://doi.org/10.1137/100796431">Counting Lattice Paths via a New Cycle Lemma</a>, SIAM J. Discrete Math., 26(2):745-754, 2012.
%F A322631 From _Robert Israel_, Dec 23 2018: (Start)
%F A322631 7*(7*n + 4)*(7*n + 1)*(7*n + 5)*(7*n + 2)*(7*n - 1)*(7*n + 3)*a(n) - 10*(5*n + 1)*(5*n + 2)*(2*n + 1)*(5*n + 3)*(5*n + 4)*(n + 1)*a(n + 1) = 0.
%F A322631 G.f.: 5*x*hypergeom([6/7, 1, 8/7, 9/7, 10/7, 11/7, 12/7], [6/5, 7/5, 3/2, 8/5, 9/5, 2], (823543*x)*1/12500)
%F A322631 a(n) ~ sqrt(35/Pi)*(823543/12500)^n/(49*n^(3/2)). (End)
%e A322631   A[i,0] = B[i,0] = 1.
%e A322631   A[i,j] = if 5*j < 2*i + 2 then A[i-1,j] + A[i,j-1] , else 0.
%e A322631   \i 1   2   3   4   5   6   7   8   9  10  11  12   13   14
%e A322631   j --------------------------------------------------------
%e A322631   0| 1   1   1   1   1   1   1   1   1   1   1   1    1    1
%e A322631   1| 0   1   2   3   4   5   6   7   8   9  10  11   12   13
%e A322631   2| 0   0   0   0   4   9  15  22  30  39  49  60   72   85
%e A322631   3| 0   0   0   0   0   0  15  37  67 106 155 215  287  372
%e A322631   4| 0   0   0   0   0   0   0   0   0 106 261 476  763 1135
%e A322631   5| 0   0   0   0   0   0   0   0   0   0   0 476 1239 2374
%e A322631 .
%e A322631   B[i,j] = if 5*j < 2*i + 1 then B[i-1,j] + B[i,j-1], else 0.
%e A322631   \i 1   2   3   4   5   6   7   8   9  10  11  12   13   14
%e A322631   j --------------------------------------------------------
%e A322631   0| 1   1   1   1   1   1   1   1   1   1   1   1    1    1
%e A322631   1| 0   0   1   2   3   4   5   6   7   8   9  10   11   12
%e A322631   2| 0   0   0   0   3   7  12  18  25  33  42  52   63   75
%e A322631   3| 0   0   0   0   0   0   0  18  43  76 118 170  233  308
%e A322631   4| 0   0   0   0   0   0   0   0   0  76 194 364  597  905
%e A322631   5| 0   0   0   0   0   0   0   0   0   0   0   0  597 1502
%e A322631 .
%e A322631   A+B:
%e A322631   \i 1   2   3   4   5   6   7   8   9  10  11  12   13   14
%e A322631   j --------------------------------------------------------
%e A322631   0| 2   2   2   2   2   2   2   2   2   2   2   2    2    2
%e A322631   1| 0   1   3   5   7   9  11  13  15  17  19  21   23   25
%e A322631   2| 0   0   0   0   7  16  27  40  55  72  91 112  135  160
%e A322631   3| 0   0   0   0   0   0  15  55 110 182 273 385  520  680
%e A322631   4| 0   0   0   0   0   0   0   0   0 182 455 840 1360 2040
%e A322631   5| 0   0   0   0   0   0   0   0   0   0   0 476 1836 3876
%e A322631 .
%e A322631   t = 1: a(1) = 5 because
%e A322631   A[5*1-1,2*1-1] = A[4,1] = 3, B[4,1] = 2,  A[4,1]+B[4,1] = 5;
%e A322631   t = 2: a(2) = 110 because
%e A322631   A[5*2-1,2*2-1] = A[9,3] = 67, B[9,3] = 43,  A[9,3]+B[9,3] = 110;
%e A322631   t = 3: a(3) = 3876 because
%e A322631   A[5*3-1,2*3-1] = A[14,5] = 2374, B[14,5] = 1502,  A[14,5]+B[14,5] = 3876.
%p A322631 a:=n->2*binomial(7*n-1,2*n)/(7*n-1): seq(a(n),n=1..20); # _Muniru A Asiru_, Dec 21 2018
%o A322631 (PARI) for(t=1,16,print1(binomial(7*t-1,2*t)*(2/(7*t-1)),", "))
%Y A322631 Cf. A274052, A322632, A322633.
%K A322631 nonn
%O A322631 1,1
%A A322631 _Hugo Pfoertner_, Dec 21 2018