This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322636 #15 May 22 2025 16:43:35 %S A322636 0,1,7,8,18,25,26,34,52,55,59,60,81,89,107,112,114,115,136,148,170, %T A322636 188,189,193,195,196,235,248,260,282,286,300,307,308,337,341,342,396, %U A322636 403,424,430,448,449,455,456,469,521,530,540,572,585,616,619,628,637,644,645,684,697 %N A322636 Numbers that are sums of consecutive heptagonal numbers (A000566). %H A322636 Robert Israel, <a href="/A322636/b322636.txt">Table of n, a(n) for n = 1..10000</a> %H A322636 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Number</a> %p A322636 N:= 1000: # for terms up to N %p A322636 Hepta:= [seq(n*(5*n-3)/2,n=0..floor((3+sqrt(9+40*N))/10))]: %p A322636 PS:= ListTools:-PartialSums(Hepta): %p A322636 S:= select(`<=`,{0,seq(seq(PS[i]-PS[j],j=1..i-1),i=1..nops(PS))},N): %p A322636 sort(convert(S,list)); # _Robert Israel_, May 22 2025 %t A322636 terms = 59; %t A322636 nmax = 17; kmax = 9; (* empirical *) %t A322636 T = Table[n(5n-3)/2, {n, 0, nmax}]; %t A322636 Union[T, Table[k MovingAverage[T, k], {k, 2, kmax}]//Flatten][[1 ;; terms]] (* _Jean-François Alcover_, Dec 26 2018 *) %Y A322636 Cf. A000566, A002413, A034705, A034706, A319184, A319185, A322637. %K A322636 nonn %O A322636 1,3 %A A322636 _Ilya Gutkovskiy_, Dec 21 2018