cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322657 Integers whose set of divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.

This page as a plain text file.
%I A322657 #16 Apr 04 2024 07:55:34
%S A322657 36,72,144,200,288,324,392,400,450,576,648,784,800,882,900,1152,1296,
%T A322657 1568,1600,1764,1800,1936,2178,2304,2450,2592,2704,2916,3042,3136,
%U A322657 3200,3528,3600,3872,4050,4356,4608,4900,5000,5184,5202,5408,5832,6050,6084,6272,6400,6498
%N A322657 Integers whose set of divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.
%C A322657 Called two-layered numbers in Behzadipour link.
%H A322657 Amiram Eldar, <a href="/A322657/b322657.txt">Table of n, a(n) for n = 1..3000</a>
%H A322657 Hussein Behzadipour, <a href="https://arxiv.org/abs/1812.07233">Two-layered numbers</a>, arXiv:1812.07233 [math.NT], 2018.
%e A322657 36 is a term with {2, 3, 4, 36} and {6, 9, 12, 18} having equal sums 45.
%p A322657 a:= proc(n) option remember; local k, l, t, b; b:=
%p A322657       proc(m, i) option remember; m=0 or i>0 and
%p A322657         (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end;
%p A322657       for k from 1+`if`(n=1, 1, a(n-1)) do
%p A322657         l:= sort([(numtheory[divisors](k) minus {1})[]]);
%p A322657         t:= add(i, i=l);
%p A322657         if t::even then forget(b);
%p A322657           if b(t/2, nops(l)) then return k fi
%p A322657         fi
%p A322657       od
%p A322657     end:
%p A322657 seq(a(n), n=1..50);  # _Alois P. Heinz_, Dec 22 2018
%t A322657 aQ[n_] := Module[{d = Rest[Divisors[n]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 6500], aQ] (* _Amiram Eldar_, Dec 22 2018 after _T. D. Noe_ at A083207 *)
%o A322657 (PARI) part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1];
%o A322657 is(n)=my(d=divisors(n), dd = select(x->(x>1), d), s=sum(i=1, #dd, dd[i])); s%2==0 && part(s/2-n, dd[1..#dd-1]); \\ both after pari in A083207
%Y A322657 Cf. A083207, A322658.
%Y A322657 Subsequence of A028982.
%K A322657 nonn
%O A322657 1,1
%A A322657 _Michel Marcus_, Dec 22 2018