cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322658 Integers whose set of proper divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.

This page as a plain text file.
%I A322658 #17 Dec 23 2018 15:58:55
%S A322658 36,72,105,144,195,200,255,288,315,324,345,385,392,400,450,495,525,
%T A322658 576,585,648,675,735,784,800,805,825,855,882,900,945,975,1035,1152,
%U A322658 1155,1295,1296,1305,1323,1365,1395,1425,1449,1463,1485,1547,1568,1575,1600,1645,1665,1755,1764,1785
%N A322658 Integers whose set of proper divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.
%C A322658 Called half-layered numbers in Behzadipour link.
%H A322658 Alois P. Heinz, <a href="/A322658/b322658.txt">Table of n, a(n) for n = 1..2000</a>
%H A322658 Hussein Behzadipour, <a href="https://arxiv.org/abs/1812.07233">Two-layered numbers</a>, arXiv:1812.07233 [math.NT], 2018.
%e A322658 36 is a term with {2, 3, 4, 18} and B = {6, 9, 12} having equal sums 27.
%p A322658 a:= proc(n) option remember; local k, l, t, b; b:=
%p A322658       proc(m, i) option remember; m=0 or i>0 and
%p A322658         (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end;
%p A322658       for k from 1+`if`(n=1, 1, a(n-1)) do
%p A322658         if isprime(k) then next fi;
%p A322658         l:= sort([(numtheory[divisors](k) minus {1, k})[]]);
%p A322658         t:= add(i, i=l);
%p A322658         if t::even then forget(b);
%p A322658           if b(t/2, nops(l)) then return k fi
%p A322658         fi
%p A322658       od
%p A322658     end:
%p A322658 seq(a(n), n=1..60);  # _Alois P. Heinz_, Dec 22 2018
%t A322658 aQ[n_] := CompositeQ[n] && Module[{d = Rest[Most[Divisors[n]]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 1785], aQ]  (* _Amiram Eldar_, Dec 22 2018 after _T. D. Noe_ at A083207 *)
%o A322658 (PARI) part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1];
%o A322658 is(n)=my(d=divisors(n), dd = select(x->((x>1) && (x<n)), d), s=sum(i=1, #dd, dd[i])); if (#dd, s%2==0 && part(s/2-vecmax(dd), dd[1..#dd-1])); \\ both after pari in A083207
%Y A322658 Cf. A083207, A246198, A322657.
%K A322658 nonn
%O A322658 1,1
%A A322658 _Michel Marcus_, Dec 22 2018