A322662 a(n) is to A151723(n+1) as A319018(n+1) is to A147562(n+1), n >= 0.
1, 13, 25, 109, 121, 193, 325, 493, 529, 661, 829, 1129, 1189, 1405, 1657, 2101, 2149, 2281, 2533, 3133, 3337, 3709, 4309, 4909, 5065, 5449, 5917, 6757, 6877, 7381, 7873, 8845, 8893, 9025, 9277, 9877, 10165, 10849, 11737
Offset: 0
Keywords
Links
- Bradley Klee, Log-Periodic Coloring over Arrowed Half Hexagon tiling.
- Bradley Klee, Log-Periodic Coloring to Stage 64.
- Bradley Klee, T_n Tree Structure, n=1,2,3,4.
- Bradley Klee, Limit-Periodic Tilings, Wolfram Demonstrations Project (2015).
- S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 216 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 [Annotated scanned copy]
Programs
-
Mathematica
HexStar=2*Sqrt[3]*{Cos[#*Pi/3+Pi/6],Sin[#*Pi/3+Pi/6]}&/@Range[0,5]; MoveSet=Join[2*HexStar+RotateRight[HexStar],2*HexStar+RotateLeft[HexStar]]; Clear@Pts;Pts[0] = {{0, 0}}; Pts[n_]:=Pts[n]=With[{pts=Pts[n-1]},Union[pts,Cases[Tally[Flatten[pts/.{x_,y_}:> Evaluate[{x,y}+#&/@MoveSet],1]],{x_,1}:>x]]];Length[Pts[#]]&/@Range[0,32]
Comments