A322664 a(n) = n^2 * Sum_{p^k|n} Sum_{j=1..k} 1/p^(2*j), where p are primes dividing n with multiplicity k.
0, 1, 1, 5, 1, 13, 1, 21, 10, 29, 1, 61, 1, 53, 34, 85, 1, 121, 1, 141, 58, 125, 1, 253, 26, 173, 91, 261, 1, 361, 1, 341, 130, 293, 74, 565, 1, 365, 178, 589, 1, 673, 1, 621, 331, 533, 1, 1021, 50, 729, 298, 861, 1, 1093, 146, 1093, 370, 845, 1, 1669, 1, 965
Offset: 1
Keywords
Examples
The prime factorization of 24 is 2^3 * 3, so a(24) = 24^2 * (1/2^2 + 1/2^(2*2) + 1/2^(2*3) + 1/3^2) = 253.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, sum(j=1, f[k,2], n^2 / f[k,1]^(2*j)));
Formula
a(n) = Sum_{d|n} bigomega(d)*J_2(n/d), where J_2 = A007434. - Ridouane Oudra, Jul 21 2025
Comments