A322666 a(n) is the smallest positive integer k such that there does not exist an m such that floor(m^2/10^n) = k.
5, 35, 282, 2600, 25317, 251000, 2503163, 25010000, 250031623, 2500100000, 25000316228, 250001000000, 2500003162278, 25000010000000, 250000031622777, 2500000100000000, 25000000316227767, 250000001000000000, 2500000003162277661, 25000000010000000000
Offset: 1
Keywords
Examples
floor(m^2/10) = 0, 0, 0, 0, 1, 2, 3, 4, 6 for m = 0..8, so a(1) = 5. floor(m^2/100) = 0, ..., 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36 for m = 0..60, so a(2) = 35.
Programs
-
PARI
a(n) = if(n==1, 5, 25*10^(n-2) + ceil(10^(n/2)))
Formula
a(n) = 25*10^(n-2) + ceiling(10^(n/2)) for n >= 2.
Comments