This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322670 #92 Apr 30 2020 06:04:23 %S A322670 1,0,1,0,1,3,0,1,12,16,0,1,41,156,131,0,1,140,1155,2460,1496,0,1,497, %T A322670 8020,32600,47355,22482,0,1,1848,55629,385420,1004360,1098678,426833, %U A322670 0,1,7191,394884,4396189,18304510,34625304,30259712,9934563 %N A322670 Number T(n,k) of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A322670 Alois P. Heinz, <a href="/A322670/b322670.txt">Rows n = 0..140, flattened</a> %H A322670 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A322670 Sum_{k=1..n} k * T(n,k) = A325930(n). %e A322670 T(3,2) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a. %e A322670 Triangle T(n,k) begins: %e A322670 1; %e A322670 0, 1; %e A322670 0, 1, 3; %e A322670 0, 1, 12, 16; %e A322670 0, 1, 41, 156, 131; %e A322670 0, 1, 140, 1155, 2460, 1496; %e A322670 0, 1, 497, 8020, 32600, 47355, 22482; %e A322670 0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833; %e A322670 ... %p A322670 A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)* %p A322670 binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) %p A322670 end: %p A322670 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A322670 seq(seq(T(n, k), k=0..n), n=0..10); %t A322670 A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n-j, k] Binomial[n-1, j-1]* Binomial[k, j], {j, 1, Min[k, n]}]]; %t A322670 T[n_, k_] := Sum[A[n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]; %t A322670 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 30 2020, after _Alois P. Heinz_ *) %Y A322670 Columns k=0-2 give: A000007, A057427, A325482. %Y A322670 Main diagonal gives A023998. %Y A322670 Row sums give A325478. %Y A322670 T(2n,n) gives A325481. %Y A322670 Cf. A321296, A323128, A325930. %K A322670 nonn,tabl %O A322670 0,6 %A A322670 _Alois P. Heinz_, Aug 29 2019