This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322675 #30 Dec 28 2018 09:07:56 %S A322675 0,49,242,675,1444,2645,4374,6727,9800,13689,18490,24299,31212,39325, %T A322675 48734,59535,71824,85697,101250,118579,137780,158949,182182,207575, %U A322675 235224,265225,297674,332667,370300,410669,453870,499999,549152,601425,656914,715715,777924,843637 %N A322675 a(n) = n * (4*n + 3)^2. %H A322675 Colin Barker, <a href="/A322675/b322675.txt">Table of n, a(n) for n = 0..1000</a> %H A322675 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A322675 sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^3. %F A322675 sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^3. %F A322675 Sum_{n>=1} 1/a(n) = 8/27 + 2*c/3 + Pi/18 - Pi^2/12 - log(2)/3 = 0.027956857336446942649782759291008857522041405948099294509008..., where c is the Catalan constant A006752. - _Vaclav Kotesovec_, Dec 23 2018 %F A322675 From _Colin Barker_, Dec 23 2018: (Start) %F A322675 G.f.: x*(49 + 46*x + x^2) / (1 - x)^4. %F A322675 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. %F A322675 (End) %e A322675 (sqrt(2) - sqrt(1))^3 = 5*sqrt(2) - 7 = sqrt(50) - sqrt(49). So a(1) = 49. %o A322675 (PARI) {a(n) = n*(4*n+3)^2} %o A322675 (PARI) concat(0, Vec(x*(49 + 46*x + x^2) / (1 - x)^4 + O(x^40))) \\ _Colin Barker_, Dec 23 2018 %Y A322675 Column 3 of A322699. %Y A322675 sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k: A033996(n) (k=2), this sequence (k=3), A322677 (k=4), A322745 (k=5). %K A322675 nonn,easy %O A322675 0,2 %A A322675 _Seiichi Manyama_, Dec 23 2018