This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322698 #12 Mar 09 2020 21:19:33 %S A322698 1,2,4,10,40,278,3554,84590,3776280,317806466,50710452574, %T A322698 15414839551538,8964708979273634,10008446308186072290, %U A322698 21518891146915893435358,89320970210116481106835986,717558285660687970023516336792,11176382741327158622885664697124082,338202509574712032788035618665293979610 %N A322698 Number of regular graphs with half-edges on n labeled vertices. %C A322698 A graph is regular if all vertices have the same degree. A half-edge is like a loop except it only adds 1 to the degree of its vertex. %H A322698 Wikipedia, <a href="https://en.wikipedia.org/wiki/Regular_graph">Regular graph</a> %e A322698 The a(3) = 10 edge sets: %e A322698 {} %e A322698 {{1},{2,3}} %e A322698 {{3},{1,2}} %e A322698 {{2},{1,3}} %e A322698 {{1},{2},{3}} %e A322698 {{1,2},{1,3},{2,3}} %e A322698 {{1},{3},{1,2},{2,3}} %e A322698 {{1},{2},{1,3},{2,3}} %e A322698 {{2},{3},{1,2},{1,3}} %e A322698 {{1},{2},{3},{1,2},{1,3},{2,3}} %t A322698 Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Union/@Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,6}] %o A322698 (PARI) for(n=1, 10, print1(A322698(n), ", ")) \\ See A295193 for script, _Andrew Howroyd_, Aug 28 2019 %Y A322698 Row sums of A333157. %Y A322698 Cf. A058891, A059441, A116539, A283877, A295193, A319189, A319190, A319612, A319729. %K A322698 nonn %O A322698 0,2 %A A322698 _Gus Wiseman_, Dec 23 2018 %E A322698 a(10)-a(18) from _Andrew Howroyd_, Aug 28 2019