This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322703 #15 Dec 28 2018 13:48:53 %S A322703 1,2,3,7,13,15,19,53,113,131,151,161,165,311,719,1291,1321,1619,1937, %T A322703 1957,2021,2093,2117,2257,2805,3671,6997,8161,10627,13969,13987,14023, %U A322703 15617,17719,17863,20443,22207,22339,38873,79349,84017,86955,180503,202133 %N A322703 Squarefree MM-numbers of strict uniform regular multiset systems spanning an initial interval of positive integers. %C A322703 A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %C A322703 A multiset multisystem is uniform if all parts have the same size, regular if all vertices appear the same number of times, and strict if there are no repeated parts. For example, {{1,1},{2,3},{2,3}} is uniform and regular but not strict, so its MM-number 15463 does not belong to the sequence. Note that the parts of parts such as {1,1} do not have to be distinct, only the multiset of parts. %e A322703 The sequence of all strict uniform regular multiset multisystems spanning an initial interval of positive integers, together with their MM-numbers, begins: %e A322703 1: {} %e A322703 2: {{}} %e A322703 3: {{1}} %e A322703 7: {{1,1}} %e A322703 13: {{1,2}} %e A322703 15: {{1},{2}} %e A322703 19: {{1,1,1}} %e A322703 53: {{1,1,1,1}} %e A322703 113: {{1,2,3}} %e A322703 131: {{1,1,1,1,1}} %e A322703 151: {{1,1,2,2}} %e A322703 161: {{1,1},{2,2}} %e A322703 165: {{1},{2},{3}} %e A322703 311: {{1,1,1,1,1,1}} %e A322703 719: {{1,1,1,1,1,1,1}} %e A322703 1291: {{1,2,3,4}} %e A322703 1321: {{1,1,1,2,2,2}} %e A322703 1619: {{1,1,1,1,1,1,1,1}} %e A322703 1937: {{1,2},{3,4}} %e A322703 1957: {{1,1,1},{2,2,2}} %e A322703 2021: {{1,4},{2,3}} %e A322703 2093: {{1,1},{1,2},{2,2}} %e A322703 2117: {{1,3},{2,4}} %e A322703 2257: {{1,1,2},{1,2,2}} %e A322703 2805: {{1},{2},{3},{4}} %e A322703 3671: {{1,1,1,1,1,1,1,1,1}} %e A322703 6997: {{1,1,2,2,3,3}} %e A322703 8161: {{1,1,1,1,1,1,1,1,1,1}} %e A322703 10627: {{1,1,1,1,2,2,2,2}} %e A322703 13969: {{1,2,2},{1,3,3}} %e A322703 13987: {{1,1,3},{2,2,3}} %e A322703 14023: {{1,1,2},{2,3,3}} %e A322703 15617: {{1,1},{2,2},{3,3}} %e A322703 17719: {{1,2},{1,3},{2,3}} %e A322703 17863: {{1,1,1,1,1,1,1,1,1,1,1}} %t A322703 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A322703 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A322703 Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&] %Y A322703 Cf. A005117, A007016, A112798, A302242, A306017, A306021, A319056, A319189, A319190, A320324, A321698, A321699, A322554, A322833. %K A322703 nonn %O A322703 1,2 %A A322703 _Gus Wiseman_, Dec 27 2018