A322705 Number of k-uniform k-regular hypergraphs spanning n vertices, for some 1 <= k <= n.
1, 1, 1, 2, 5, 26, 472, 23342
Offset: 0
Examples
The a(3) = 2 hypergraphs: {{1},{2},{3}} {{1,2},{1,3},{2,3}} The a(4) = 5 hypergraphs: {{1},{2},{3},{4}} {{1,2},{1,3},{2,4},{3,4}} {{1,2},{1,4},{2,3},{3,4}} {{1,3},{1,4},{2,3},{2,4}} {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} The a(5) = 26 hypergraphs: {{1},{2},{3},{4},{5}} {{1,2},{1,3},{2,4},{3,5},{4,5}} {{1,2},{1,3},{2,5},{3,4},{4,5}} {{1,2},{1,4},{2,3},{3,5},{4,5}} {{1,2},{1,4},{2,5},{3,4},{3,5}} {{1,2},{1,5},{2,3},{3,4},{4,5}} {{1,2},{1,5},{2,4},{3,4},{3,5}} {{1,3},{1,4},{2,3},{2,5},{4,5}} {{1,3},{1,4},{2,4},{2,5},{3,5}} {{1,3},{1,5},{2,3},{2,4},{4,5}} {{1,3},{1,5},{2,4},{2,5},{3,4}} {{1,4},{1,5},{2,3},{2,4},{3,5}} {{1,4},{1,5},{2,3},{2,5},{3,4}} {{1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5}} {{1,2,3},{1,2,4},{1,4,5},{2,3,5},{3,4,5}} {{1,2,3},{1,2,5},{1,3,4},{2,4,5},{3,4,5}} {{1,2,3},{1,2,5},{1,4,5},{2,3,4},{3,4,5}} {{1,2,3},{1,3,4},{1,4,5},{2,3,5},{2,4,5}} {{1,2,3},{1,3,5},{1,4,5},{2,3,4},{2,4,5}} {{1,2,4},{1,2,5},{1,3,4},{2,3,5},{3,4,5}} {{1,2,4},{1,2,5},{1,3,5},{2,3,4},{3,4,5}} {{1,2,4},{1,3,4},{1,3,5},{2,3,5},{2,4,5}} {{1,2,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5}} {{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,4,5}} {{1,2,5},{1,3,4},{1,4,5},{2,3,4},{2,3,5}} {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}
Crossrefs
Programs
-
Mathematica
Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]
Comments