This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322706 #5 Dec 24 2018 07:46:39 %S A322706 1,1,0,1,1,0,1,3,1,0,1,12,12,1,0,1,70,330,70,1,0,1,465,11205,11205, %T A322706 465,1,0,1,3507,505505,2531200,505505,3507,1,0 %N A322706 Regular triangle read by rows where T(n,k) is the number of k-regular k-uniform hypergraphs spanning n vertices. %C A322706 We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges. %e A322706 Triangle begins: %e A322706 1 %e A322706 1 0 %e A322706 1 1 0 %e A322706 1 3 1 0 %e A322706 1 12 12 1 0 %e A322706 1 70 330 70 1 0 %e A322706 1 465 11205 11205 465 1 0 %e A322706 1 3507 505505 2531200 505505 3507 1 0 %e A322706 Row 4 counts the following hypergraphs: %e A322706 {{1}{2}{3}{4}} {{12}{13}{24}{34}} {{123}{124}{134}{234}} %e A322706 {{12}{14}{23}{34}} %e A322706 {{13}{14}{23}{24}} %t A322706 Table[Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}] %Y A322706 Row sums are A322705. Second column is A001205. Third column is A110101. %Y A322706 Cf. A005176, A058891, A059441, A295193, A306021, A319056, A319189, A319190, A319612, A321721, A322704. %K A322706 nonn,more,tabl %O A322706 1,8 %A A322706 _Gus Wiseman_, Dec 23 2018