cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322714 a(n) = denominator of the Riemann prime counting function for 10^n.

This page as a plain text file.
%I A322714 #11 Feb 16 2025 08:33:57
%S A322714 1,3,15,2520,45045,102960,232792560,5354228880,1115464350,
%T A322714 291136195350,20629078984800,144403552893600,5342931457063200,
%U A322714 856326196254765600,9419588158802421600,3099044504245996706400,4106233968125945635980,16424935872503782543920
%N A322714 a(n) = denominator of the Riemann prime counting function for 10^n.
%H A322714 Daniel Suteu, <a href="/A322714/b322714.txt">Table of n, a(n) for n = 0..27</a>
%H A322714 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannPrimeCountingFunction.html">Riemann Prime Counting Function</a>
%F A322714 a(n) = A096625(10^n).
%F A322714 a(n) = denominator of Sum_{k=1..floor(log_2(10^n))} pi(floor(10^(n/k)))/k, where pi(x) is the prime counting function A000720.
%e A322714 0, 16/3, 428/15, 445273/2520, 56175529/45045, 991892879/102960, 18296822833013/232792560, ...
%o A322714 (PARI) a(n) = denominator(sum(k=1, logint(10^n, 2), primepi(sqrtnint(10^n, k))/k));
%Y A322714 The corresponding numerators are A322713.
%Y A322714 Cf. A000720, A096625.
%K A322714 frac,nonn
%O A322714 0,2
%A A322714 _Daniel Suteu_, Dec 24 2018