cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322745 a(n) = n * (16*n^2+20*n+5)^2.

This page as a plain text file.
%I A322745 #17 Dec 26 2018 14:58:23
%S A322745 0,1681,23762,131043,465124,1275125,2948406,6041287,11309768,19740249,
%T A322745 32580250,51369131,77968812,114594493,163845374,228735375,312723856,
%U A322745 419746337,554245218,721200499,926160500,1175272581,1475313862,1833721943,2258625624,2758875625,3344075306
%N A322745 a(n) = n * (16*n^2+20*n+5)^2.
%H A322745 Colin Barker, <a href="/A322745/b322745.txt">Table of n, a(n) for n = 0..1000</a>
%H A322745 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A322745 sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^5.
%F A322745 sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^5.
%F A322745 From _Colin Barker_, Dec 25 2018: (Start)
%F A322745 G.f.: x*(1681 + 13676*x + 13686*x^2 + 1676*x^3 + x^4) / (1 - x)^6.
%F A322745 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
%F A322745 (End)
%e A322745 (sqrt(2) + sqrt(1))^5 = 29*sqrt(2) + 41 = sqrt(1682) + sqrt(1681). So a(1) = 1681.
%o A322745 (PARI) {a(n) = n*(16*n^2+20*n+5)^2}
%o A322745 (PARI) concat(0, Vec(x*(1681 + 13676*x + 13686*x^2 + 1676*x^3 + x^4) / (1 - x)^6 + O(x^30))) \\ _Colin Barker_, Dec 25 2018
%Y A322745 Column 5 of A322699.
%K A322745 nonn,easy
%O A322745 0,2
%A A322745 _Seiichi Manyama_, Dec 25 2018