cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322746 a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k).

This page as a plain text file.
%I A322746 #21 Dec 29 2018 03:48:38
%S A322746 0,1,24,675,25920,1275125,76545000,5425069447,443365544448,
%T A322746 41047124680809,4245890890571000,485307363135371051,
%U A322746 60742714406414040000,8262695239025750162653,1213734518568509516047560,191478489107270936785743375,32288451913272713227175006208
%N A322746 a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k).
%H A322746 Seiichi Manyama, <a href="/A322746/b322746.txt">Table of n, a(n) for n = 0..321</a>
%H A322746 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>.
%H A322746 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A322746 sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^n.
%F A322746 sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^n.
%F A322746 a(n) = (A173174(n) - 1)/2.
%F A322746 a(n) ~ exp(1/2) * 2^(2*n - 2) * n^n. - _Vaclav Kotesovec_, Dec 25 2018
%e A322746 (sqrt(3) + sqrt(2))^2 = 5 + 2*sqrt(6) = sqrt(25) + sqrt(24). So a(2) = 24.
%o A322746 (PARI) {a(n) = 1/2*(-1+sum(k=0, n, binomial(2*n,2*k)*(n+1)^(n-k)*n^k))}
%o A322746 (PARI) {a(n) = (polchebyshev(n, 1, 2*n+1)-1)/2}
%Y A322746 Main diagonal of A322699.
%Y A322746 Cf. A322747.
%K A322746 nonn
%O A322746 0,3
%A A322746 _Seiichi Manyama_, Dec 25 2018