cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322764 Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2.

This page as a plain text file.
%I A322764 #26 Aug 06 2021 15:01:59
%S A322764 9,26,92,371,1663,8155,43263,246218,1493344,9600683,65133513,
%T A322764 464538351,3471671717,27109690422,220646396816,1867649896679,
%U A322764 16408260807503,149357276866099,1406334890073883,13677748330883790,137221985081833892
%N A322764 Number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_n, and 2 copies each of y_1 and y_2.
%C A322764 The initial 9 is also A020555(2).
%D A322764 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
%H A322764 Seiichi Manyama, <a href="/A322764/b322764.txt">Table of n, a(n) for n = 0..500</a>
%F A322764 4*a(n) = 3*b(n) + 2*b(n+1) + 3*b(n+2) + 2*b(n+3) + b(n+4), where b(n) = A000110(n). - _Seiichi Manyama_, Nov 21 2020
%o A322764 (PARI) T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2);
%o A322764 vector(20, n, T(n-1, 2)) \\ _Seiichi Manyama_, Nov 21 2020
%Y A322764 Cf. A000110 (Bell number), A020555, A322773.
%Y A322764 Column 2 of the array in A322765.
%K A322764 nonn
%O A322764 0,1
%A A322764 _N. J. A. Sloane_, Dec 30 2018