This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322765 #42 Jul 21 2021 14:41:17 %S A322765 1,1,2,2,4,9,5,11,26,66,15,36,92,249,712,52,135,371,1075,3274,10457, %T A322765 203,566,1663,5133,16601,56135,198091,877,2610,8155,26683,91226, %U A322765 325269,1207433,4659138,4140,13082,43263,149410,537813,2014321,7837862,31638625,132315780 %N A322765 Array read by upwards antidiagonals: T(m,n) = number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0. %D A322765 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. %H A322765 Seiichi Manyama, <a href="/A322765/b322765.txt">Antidiagonals n = 0..139, flattened</a> %F A322765 Knuth p. 779 gives a recurrence using the Bell numbers A000110 (see Maple program). %F A322765 From _Alois P. Heinz_, Jul 21 2021: (Start) %F A322765 A(n,k) = A001055(A002110(n+k)*A002110(k)). %F A322765 A(n,k) = A346500(n+k,k). (End) %e A322765 The array begins: %e A322765 1, 2, 9, 66, 712, 10457, 198091, ... %e A322765 1, 4, 26, 249, 3274, 56135, 1207433, ... %e A322765 2, 11, 92, 1075, 16601, 325269, 7837862, ... %e A322765 5, 36, 371, 5133, 91226, 2014321, 53840640, ... %e A322765 15, 135, 1663, 26683, 537813, 13241402, 389498179, ... %e A322765 52, 566, 8155, 149410, 3376696, 91914202, 2955909119, ... %e A322765 203, 2610, 43263, 894124, 22451030, 670867539, 23456071495, ... %e A322765 ... %p A322765 B := n -> combinat[bell](n): %p A322765 P := proc(m,n) local k; global B; option remember; %p A322765 if n = 0 then B(m) else %p A322765 (1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end; # P(m,n) (which is Knuth's notation) is T(m,n) %t A322765 P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])]; %t A322765 Table[P[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* _Jean-François Alcover_, Jan 02 2019, from Maple *) %o A322765 (PARI) {T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2)} \\ _Seiichi Manyama_, Nov 21 2020 %Y A322765 Rows include A020555, A322766, A322767. %Y A322765 Columns include A000110, A035098, A322764, A322768. %Y A322765 Main diagonal is A322769. %Y A322765 See A322770 for partitions into distinct parts. %Y A322765 Cf. A001055, A002110, A346500. %K A322765 nonn,tabl %O A322765 0,3 %A A322765 _N. J. A. Sloane_, Dec 30 2018