This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322770 #35 Jul 21 2021 15:01:38 %S A322770 1,1,1,2,3,5,5,9,18,40,15,31,70,172,457,52,120,299,801,2295,6995,203, %T A322770 514,1393,4025,12347,40043,136771,877,2407,7023,21709,70843,243235, %U A322770 875936,3299218,4140,12205,38043,124997,431636,1562071,5908978,23308546,95668354 %N A322770 Array read by upwards antidiagonals: T(m,n) = number of set partitions into distinct parts of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0. %D A322770 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. (Background information.) %H A322770 Alois P. Heinz, <a href="/A322770/b322770.txt">Antidiagonals n = 0..140, flattened</a> %H A322770 D. E. Knuth, <a href="/A322770/a322770_1.txt">Partitioning a multiset into submultisets</a>, Email to N. J. A. Sloane, Dec 29 2018. %F A322770 Knuth gives a recurrence using the Bell numbers A000110 (see Maple program). %e A322770 The array begins: %e A322770 1, 1, 5, 40, 457, 6995, 136771, ... %e A322770 1, 3, 18, 172, 2295, 40043, 875936, ... %e A322770 2, 9, 70, 801, 12347, 243235, 5908978, ... %e A322770 5, 31, 299, 4025, 70843, 1562071, 41862462, ... %e A322770 15, 120, 1393, 21709, 431636, 10569612, 310606617, ... %e A322770 52, 514, 7023, 124997, 2781372, 75114998, 2407527172, ... %e A322770 203, 2407, 38043, 764538, 18885177, 559057663, 19449364539, ... %e A322770 ... %p A322770 B := n -> combinat[bell](n): %p A322770 Q := proc(m,n) local k; global B; option remember; %p A322770 if n = 0 then B(m) else %p A322770 (1/2)*( Q(m+2,n-1) + Q(m+1,n-1) - add( binomial(n-1,k)*Q(m,k), k=0..n-1) ); fi; end; # Q(m,n) (which is Knuth's notation) is T(m,n) %t A322770 Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])]; %t A322770 Table[Q[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* _Jean-François Alcover_, Jan 02 2019, from Maple *) %Y A322770 Rows include A094574, A322771, A322772. %Y A322770 Columns include A000110, A087648, A322773, A322774. %Y A322770 Main diagonal is A322775. %K A322770 nonn,tabl %O A322770 0,4 %A A322770 _N. J. A. Sloane_, Dec 30 2018