A322781 Numbers of the form p*q where p, q are distinct primes congruent to 1 mod 4 such that Legendre(p/q) = -1.
65, 85, 185, 265, 365, 481, 485, 493, 533, 565, 629, 685, 697, 785, 865, 949, 965, 985, 1037, 1073, 1157, 1165, 1189, 1241, 1261, 1285, 1385, 1417, 1465, 1565, 1585, 1649, 1685, 1765, 1769, 1781, 1853, 1865, 1921, 1937, 1985, 2117, 2165, 2173, 2257, 2285, 2509, 2561, 2581, 2785, 2813, 2885, 2929, 2941
Offset: 1
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Morris Newman, A note on an equation related to the Pell equation, The American Mathematical Monthly 84.5 (1977): 365-366.
Programs
-
PARI
isok(n) = my (f=factor(n)); omega(f)==2 && bigomega(f)==2 && f[1,1]%4==1 && f[2,1]%4==1 && kronecker(f[1,1], f[2,1])==-1 \\ Rémy Sigrist, Jan 11 2019
-
Python
from sympy.ntheory import legendre_symbol, factorint A322781_list, k = [], 1 while len(A322781_list) < 10000: fk, fv = zip(*list(factorint(4*k+1).items())) if sum(fv) == len(fk) == 2 and fk[0] % 4 == fk[1] % 4 == 1 and legendre_symbol(fk[0],fk[1]) == -1: A322781_list.append(4*k+1) k += 1 # Chai Wah Wu, Jan 11 2019
Comments