This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322785 #17 Feb 03 2022 16:45:59 %S A322785 1,1,4,4,12,4,48,4,183,297,1186,4,33950,4,139527,1529608,4726356,4, %T A322785 229255536,4,3705777010,36279746314,13764663019,4,14096735197959, %U A322785 5194673049514,7907992957755,2977586461058927,13426396910491001,4,1350012288268171854,4,59487352224070807287 %N A322785 Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers. %C A322785 A multiset is uniform if all multiplicities are equal. A multiset partition is uniform if all parts have the same size. %H A322785 Andrew Howroyd, <a href="/A322785/b322785.txt">Table of n, a(n) for n = 0..100</a> %F A322785 a(n) = 4 <=> n in { A000040 }. - _Alois P. Heinz_, Feb 03 2022 %e A322785 The a(1) = 1 though a(6) = 48 multiset partitions: %e A322785 {1} {11} {111} {1111} {11111} {111111} %e A322785 {12} {123} {1122} {12345} {111222} %e A322785 {1}{1} {1}{1}{1} {1234} {1}{1}{1}{1}{1} {112233} %e A322785 {1}{2} {1}{2}{3} {11}{11} {1}{2}{3}{4}{5} {123456} %e A322785 {11}{22} {111}{111} %e A322785 {12}{12} {111}{222} %e A322785 {12}{34} {112}{122} %e A322785 {13}{24} {112}{233} %e A322785 {14}{23} {113}{223} %e A322785 {1}{1}{1}{1} {122}{133} %e A322785 {1}{1}{2}{2} {123}{123} %e A322785 {1}{2}{3}{4} {123}{456} %e A322785 {124}{356} %e A322785 {125}{346} %e A322785 {126}{345} %e A322785 {134}{256} %e A322785 {135}{246} %e A322785 {136}{245} %e A322785 {145}{236} %e A322785 {146}{235} %e A322785 {156}{234} %e A322785 {11}{11}{11} %e A322785 {11}{12}{22} %e A322785 {11}{22}{33} %e A322785 {11}{23}{23} %e A322785 {12}{12}{12} %e A322785 {12}{12}{33} %e A322785 {12}{13}{23} %e A322785 {12}{34}{56} %e A322785 {12}{35}{46} %e A322785 {12}{36}{45} %e A322785 {13}{13}{22} %e A322785 {13}{24}{56} %e A322785 {13}{25}{46} %e A322785 {13}{26}{45} %e A322785 {14}{23}{56} %e A322785 {14}{25}{36} %e A322785 {14}{26}{35} %e A322785 {15}{23}{46} %e A322785 {15}{24}{36} %e A322785 {15}{26}{34} %e A322785 {16}{23}{45} %e A322785 {16}{24}{35} %e A322785 {16}{25}{34} %e A322785 {1}{1}{1}{1}{1}{1} %e A322785 {1}{1}{1}{2}{2}{2} %e A322785 {1}{1}{2}{2}{3}{3} %e A322785 {1}{2}{3}{4}{5}{6} %t A322785 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A322785 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A322785 Table[Sum[Length[Select[mps[m],SameQ@@Length/@#&]],{m,Table[Join@@Table[Range[n/d],{d}],{d,Divisors[n]}]}],{n,8}] %Y A322785 Row sums of A322788. %Y A322785 Cf. A000040, A038041, A072774, A100778, A299353, A306017, A306018, A306021, A317583, A317584, A319056, A319189, A321721, A322705, A322784, A322788. %K A322785 nonn %O A322785 0,3 %A A322785 _Gus Wiseman_, Dec 26 2018 %E A322785 More terms from _Alois P. Heinz_, Jan 30 2019 %E A322785 Terms a(14) and beyond from _Andrew Howroyd_, Feb 03 2022