cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

This page as a plain text file.
%I A322786 #19 Mar 05 2025 22:05:26
%S A322786 1,2,2,5,3,15,9,5,52,7,203,66,31,11,877,15,4140,712,109,22,21147,686,
%T A322786 30,115975,10457,339,42,678570,56,4213597,198091,27036,6721,1043,77,
%U A322786 27644437,101,190899322,4659138,2998,135,1382958545,1688360,58616,176
%N A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.
%H A322786 Andrew Howroyd, <a href="/A322786/b322786.txt">Table of n, a(n) for n = 1..207</a> (first 50 rows)
%F A322786 T(n,k) = A001055(A002110(n/d)^d), where d = A027750(n,k).
%F A322786 T(n,k) = A219727(d, n/d), where d = A027750(n, k). - _Andrew Howroyd_, Jan 11 2020
%e A322786 Triangle begins:
%e A322786         1
%e A322786         2       2
%e A322786         5       3
%e A322786        15       9       5
%e A322786        52       7
%e A322786       203      66      31      11
%e A322786       877      15
%e A322786      4140     712     109      22
%e A322786     21147     686      30
%e A322786    115975   10457     339      42
%e A322786    678570      56
%e A322786   4213597  198091   27036    6721    1043      77
%e A322786 For example, row 4 counts the following multiset partitions.
%e A322786   {{1,2,3,4}}        {{1,1,2,2}}        {{1,1,1,1}}
%e A322786   {{1},{2,3,4}}      {{1},{1,2,2}}      {{1},{1,1,1}}
%e A322786   {{1,2},{3,4}}      {{1,1},{2,2}}      {{1,1},{1,1}}
%e A322786   {{1,3},{2,4}}      {{1,2},{1,2}}      {{1},{1},{1,1}}
%e A322786   {{1,4},{2,3}}      {{2},{1,1,2}}      {{1},{1},{1},{1}}
%e A322786   {{2},{1,3,4}}      {{1},{1},{2,2}}
%e A322786   {{3},{1,2,4}}      {{1},{2},{1,2}}
%e A322786   {{4},{1,2,3}}      {{2},{2},{1,1}}
%e A322786   {{1},{2},{3,4}}    {{1},{1},{2},{2}}
%e A322786   {{1},{3},{2,4}}
%e A322786   {{1},{4},{2,3}}
%e A322786   {{2},{3},{1,4}}
%e A322786   {{2},{4},{1,3}}
%e A322786   {{3},{4},{1,2}}
%e A322786   {{1},{2},{3},{4}}
%t A322786 u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
%t A322786 Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
%o A322786 (PARI) \\ needs T(n,k) from A219727.
%o A322786 Row(n)={[T(d,n/d) | d<-divisors(n)]}
%o A322786 { for(n=1, 12, print(Row(n))) } \\ _Andrew Howroyd_, Jan 11 2020
%Y A322786 Row sums are A322784. First column is A000110.
%Y A322786 Cf. A001055, A005176, A027750, A056239, A072774, A100778, A219727, A295193, A306017, A319190, A319612, A322784, A322785, A322787, A322788, A322792.
%K A322786 nonn,tabf
%O A322786 1,2
%A A322786 _Gus Wiseman_, Dec 26 2018
%E A322786 Edited by _Peter Munn_, Mar 05 2025