cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322787 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic multiset partitions of a multiset with d = A027750(n, k) copies of each integer from 1 to n/d.

This page as a plain text file.
%I A322787 #14 Mar 05 2025 22:05:30
%S A322787 1,2,2,3,3,5,7,5,7,7,11,23,21,11,15,15,22,79,66,22,30,162,30,42,274,
%T A322787 192,42,56,56,77,1003,1636,1338,565,77,101,101,135,3763,1579,135,176,
%U A322787 19977,10585,176,231,14723,43686,4348,231,297,297,385,59663,298416,82694,11582,385
%N A322787 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic multiset partitions of a multiset with d = A027750(n, k) copies of each integer from 1 to n/d.
%H A322787 Andrew Howroyd, <a href="/A322787/b322787.txt">Table of n, a(n) for n = 1..207</a> (rows 1..50)
%e A322787 Triangle begins:
%e A322787    1
%e A322787    2   2
%e A322787    3   3
%e A322787    5   7   5
%e A322787    7   7
%e A322787   11  23  21  11
%e A322787   15  15
%e A322787   22  79  66  22
%e A322787   30 162  30
%e A322787   42 274 192  42
%e A322787 Non-isomorphic representatives of the multiset partitions counted under row 6:
%e A322787 {123456}           {112233}           {111222}           {111111}
%e A322787 {1}{23456}         {1}{12233}         {1}{11222}         {1}{11111}
%e A322787 {12}{3456}         {11}{2233}         {11}{1222}         {11}{1111}
%e A322787 {123}{456}         {112}{233}         {111}{222}         {111}{111}
%e A322787 {1}{2}{3456}       {12}{1233}         {112}{122}         {1}{1}{1111}
%e A322787 {1}{23}{456}       {123}{123}         {12}{1122}         {1}{11}{111}
%e A322787 {12}{34}{56}       {1}{1}{2233}       {1}{1}{1222}       {11}{11}{11}
%e A322787 {1}{2}{3}{456}     {1}{12}{233}       {1}{11}{222}       {1}{1}{1}{111}
%e A322787 {1}{2}{34}{56}     {11}{22}{33}       {11}{12}{22}       {1}{1}{11}{11}
%e A322787 {1}{2}{3}{4}{56}   {11}{23}{23}       {1}{12}{122}       {1}{1}{1}{1}{11}
%e A322787 {1}{2}{3}{4}{5}{6} {1}{2}{1233}       {1}{2}{1122}       {1}{1}{1}{1}{1}{1}
%e A322787                    {12}{13}{23}       {12}{12}{12}
%e A322787                    {1}{23}{123}       {2}{11}{122}
%e A322787                    {2}{11}{233}       {1}{1}{1}{222}
%e A322787                    {1}{1}{2}{233}     {1}{1}{12}{22}
%e A322787                    {1}{1}{22}{33}     {1}{1}{2}{122}
%e A322787                    {1}{1}{23}{23}     {1}{2}{11}{22}
%e A322787                    {1}{2}{12}{33}     {1}{2}{12}{12}
%e A322787                    {1}{2}{13}{23}     {1}{1}{1}{2}{22}
%e A322787                    {1}{2}{3}{123}     {1}{1}{2}{2}{12}
%e A322787                    {1}{1}{2}{2}{33}   {1}{1}{1}{2}{2}{2}
%e A322787                    {1}{1}{2}{3}{23}
%e A322787                    {1}{1}{2}{2}{3}{3}
%o A322787 (PARI) \\ See A318951 for RowSumMats
%o A322787 row(n)={my(d=divisors(n)); vector(#d, i, RowSumMats(n/d[i], n, d[i]))}
%o A322787 { for(n=1, 15, print(row(n))) } \\ _Andrew Howroyd_, Feb 02 2022
%Y A322787 Row sums are A306017. First column is A000041.
%Y A322787 Cf. A001055, A005176, A027750, A056239, A072774, A100778, A295193, A306018, A318951, A319190, A319612, A322784, A322785, A322788, A322792.
%K A322787 nonn,tabf
%O A322787 1,2
%A A322787 _Gus Wiseman_, Dec 26 2018
%E A322787 Terms a(28) and beyond from _Andrew Howroyd_, Feb 02 2022
%E A322787 Name edited by _Peter Munn_, Mar 05 2025