cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322788 Irregular triangle read by rows where T(n,k) is the number of uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

This page as a plain text file.
%I A322788 #17 Mar 05 2025 22:04:55
%S A322788 1,2,2,2,2,5,4,3,2,2,27,11,6,4,2,2,142,29,8,4,282,12,3,1073,101,8,4,2,
%T A322788 2,32034,1581,234,75,20,6,2,2,136853,2660,10,4,1527528,1985,91,4,
%U A322788 4661087,64596,648,20,5,2,2,227932993,1280333,41945,231,28,6
%N A322788 Irregular triangle read by rows where T(n,k) is the number of uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.
%C A322788 A multiset partition is uniform if all parts have the same size.
%H A322788 Andrew Howroyd, <a href="/A322788/b322788.txt">Table of n, a(n) for n = 1..482</a> (rows 1..100)
%F A322788 T(n,k) = A322794(A002110(n/d)^d), where d = A027750(n,k).
%e A322788 Triangle begins:
%e A322788      1
%e A322788      2    2
%e A322788      2    2
%e A322788      5    4    3
%e A322788      2    2
%e A322788     27   11    6    4
%e A322788      2    2
%e A322788    142   29    8    4
%e A322788    282   12    3
%e A322788   1073  101    8    4
%e A322788 The multiset partitions counted under row 6:
%e A322788   {123456}          {112233}          {111222}          {111111}
%e A322788   {123}{456}        {112}{233}        {111}{222}        {111}{111}
%e A322788   {124}{356}        {113}{223}        {112}{122}        {11}{11}{11}
%e A322788   {125}{346}        {122}{133}        {11}{12}{22}      {1}{1}{1}{1}{1}{1}
%e A322788   {126}{345}        {123}{123}        {12}{12}{12}
%e A322788   {134}{256}        {11}{22}{33}      {1}{1}{1}{2}{2}{2}
%e A322788   {135}{246}        {11}{23}{23}
%e A322788   {136}{245}        {12}{12}{33}
%e A322788   {145}{236}        {12}{13}{23}
%e A322788   {146}{235}        {13}{13}{22}
%e A322788   {156}{234}        {1}{1}{2}{2}{3}{3}
%e A322788   {12}{34}{56}
%e A322788   {12}{35}{46}
%e A322788   {12}{36}{45}
%e A322788   {13}{24}{56}
%e A322788   {13}{25}{46}
%e A322788   {13}{26}{45}
%e A322788   {14}{23}{56}
%e A322788   {14}{25}{36}
%e A322788   {14}{26}{35}
%e A322788   {15}{23}{46}
%e A322788   {15}{24}{36}
%e A322788   {15}{26}{34}
%e A322788   {16}{23}{45}
%e A322788   {16}{24}{35}
%e A322788   {16}{25}{34}
%e A322788   {1}{2}{3}{4}{5}{6}
%t A322788 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A322788 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A322788 Table[Length[Select[mps[Join@@Table[Range[n/d],{d}]],SameQ@@Length/@#&]],{n,10},{d,Divisors[n]}]
%Y A322788 Row sums are A322785. First column is A038041.
%Y A322788 Cf. A001055, A005176, A027750, A056239, A072774, A100778, A295193, A306017, A319190, A319612, A322784, A322785, A322786, A322789, A322792.
%K A322788 nonn,look,tabf
%O A322788 1,2
%A A322788 _Gus Wiseman_, Dec 26 2018
%E A322788 More terms from _Alois P. Heinz_, Jan 30 2019
%E A322788 Terms a(38) and beyond from _Andrew Howroyd_, Feb 03 2022
%E A322788 Edited by _Peter Munn_, Mar 05 2025