This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322790 #52 Dec 29 2018 14:32:05 %S A322790 1,1,1,1,3,1,1,17,5,1,1,99,49,7,1,1,577,485,97,9,1,1,3363,4801,1351, %T A322790 161,11,1,1,19601,47525,18817,2889,241,13,1,1,114243,470449,262087, %U A322790 51841,5291,337,15,1,1,665857,4656965,3650401,930249,116161,8749,449,17,1 %N A322790 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j. %H A322790 Seiichi Manyama, <a href="/A322790/b322790.txt">Antidiagonals n = 0..139, flattened</a> %H A322790 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %H A322790 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A322790 a(n) = 2 * A322699(n) + 1. %F A322790 A(n,k) + sqrt(A(n,k)^2 - 1) = (sqrt(n+1) + sqrt(n))^(2*k). %F A322790 A(n,k) - sqrt(A(n,k)^2 - 1) = (sqrt(n+1) - sqrt(n))^(2*k). %F A322790 A(n,0) = 1, A(n,1) = 2*n+1 and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) for k > 1. %F A322790 A(n,k) = T_{k}(2*n+1) where T_{k}(x) is a Chebyshev polynomial of the first kind. %F A322790 T_1(x) = x. So A(n,1) = 2*n+1. %e A322790 Square array begins: %e A322790 1, 1, 1, 1, 1, 1, 1, ... %e A322790 1, 3, 17, 99, 577, 3363, 19601, ... %e A322790 1, 5, 49, 485, 4801, 47525, 470449, ... %e A322790 1, 7, 97, 1351, 18817, 262087, 3650401, ... %e A322790 1, 9, 161, 2889, 51841, 930249, 16692641, ... %e A322790 1, 11, 241, 5291, 116161, 2550251, 55989361, ... %e A322790 1, 13, 337, 8749, 227137, 5896813, 153090001, ... %t A322790 A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Amiram Eldar_, Dec 26 2018 *) %Y A322790 Columns 0-3 give A000012, A005408, A069129(n+1), A322830. %Y A322790 Rows 0-9 give A000012, A001541, A001079, A011943(n+1), A023039, A077422, A097308, A068203, A056771, A078986. %Y A322790 Main diagonal gives A173174. %Y A322790 A(n-1,n) gives A173148(n). %Y A322790 Cf. A322699, A322747. %K A322790 nonn,tabl %O A322790 0,5 %A A322790 _Seiichi Manyama_, Dec 26 2018