A322793 Proper powers of primorial numbers.
4, 8, 16, 32, 36, 64, 128, 216, 256, 512, 900, 1024, 1296, 2048, 4096, 7776, 8192, 16384, 27000, 32768, 44100, 46656, 65536, 131072, 262144, 279936, 524288, 810000, 1048576, 1679616, 2097152, 4194304, 5336100, 8388608, 9261000
Offset: 1
Keywords
Examples
The sequence of all non-strict uniform integer partitions whose Heinz numbers belong to the sequence begins: (11), (111), (1111), (11111), (2211), (111111), (1111111), (222111), (11111111), (111111111), (332211), (1111111111), (22221111).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..8255
Crossrefs
Programs
-
Mathematica
unintpropQ[n_]:=And[SameQ@@Last/@FactorInteger[n],FactorInteger[n][[1,2]]>1,Length[FactorInteger[n]]==PrimePi[FactorInteger[n][[-1,1]]]]; Select[Range[10000],unintpropQ] (* Second program: *) nn = 2^24; k = 1; P = 2; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]]][[-1, 1]] (* Michael De Vlieger, Oct 04 2023 *)
Formula
Sum_{n>=1} 1/a(n) = Sum_{k>=1} 1/(A002110(k)*(A002110(k)-1)) = 0.53450573145072369022... . - Amiram Eldar, Mar 10 2024
Comments