cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322793 Proper powers of primorial numbers.

Original entry on oeis.org

4, 8, 16, 32, 36, 64, 128, 216, 256, 512, 900, 1024, 1296, 2048, 4096, 7776, 8192, 16384, 27000, 32768, 44100, 46656, 65536, 131072, 262144, 279936, 524288, 810000, 1048576, 1679616, 2097152, 4194304, 5336100, 8388608, 9261000
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A primorial number is a product of the first n primes, for some n.
Also Heinz numbers of non-strict uniform integer partitions whose union is an initial interval of positive integers. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of all non-strict uniform integer partitions whose Heinz numbers belong to the sequence begins: (11), (111), (1111), (11111), (2211), (111111), (1111111), (222111), (11111111), (111111111), (332211), (1111111111), (22221111).
		

Crossrefs

Programs

  • Mathematica
    unintpropQ[n_]:=And[SameQ@@Last/@FactorInteger[n],FactorInteger[n][[1,2]]>1,Length[FactorInteger[n]]==PrimePi[FactorInteger[n][[-1,1]]]];
    Select[Range[10000],unintpropQ]
    (* Second program: *)
    nn = 2^24; k = 1; P = 2; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]]][[-1, 1]] (* Michael De Vlieger, Oct 04 2023 *)

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} 1/(A002110(k)*(A002110(k)-1)) = 0.53450573145072369022... . - Amiram Eldar, Mar 10 2024