A322794 Number of factorizations of n into factors > 1 where all factors have the same number of prime factors counted with multiplicity.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 4, 2, 2, 2
Offset: 1
Keywords
Examples
The a(1260) = 13 factorizations: (1260) (18*70) (4*9*35) (2*2*3*3*5*7) (20*63) (6*6*35) (28*45) (4*15*21) (30*42) (6*10*21) (12*105) (6*14*15) (9*10*14) The a(1260) = 13 multiset partitions: {{1},{1},{2},{2},{3},{4}} {{1,1},{2,2},{3,4}} {{1,1},{2,3},{2,4}} {{1,2},{1,2},{3,4}} {{1,2},{1,3},{2,4}} {{1,2},{1,4},{2,3}} {{2,2},{1,3},{1,4}} {{1,1,2},{2,3,4}} {{1,2,2},{1,3,4}} {{1,1,3},{2,2,4}} {{1,1,4},{2,2,3}} {{1,2,3},{1,2,4}} {{1,1,2,2,3,4}}
Links
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],SameQ@@PrimeOmega/@#&]],{n,100}]
Comments