This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322799 #10 Feb 16 2025 08:33:57 %S A322799 1,1,1,1,1,1,1,2,3,4,5,6,7,8,10,13,17,22,29,37,46,57,71,89,112,143, %T A322799 183,233,295,372,468,588,741,937,1188,1506,1908,2414,3049,3848,4857, %U A322799 6136,7757,9812,12414,15702,19852,25089,31703,40061,50631,64004,80923,102318 %N A322799 Number of compositions (ordered partitions) of n into heptagonal numbers (A000566). %H A322799 Alois P. Heinz, <a href="/A322799/b322799.txt">Table of n, a(n) for n = 0..9828</a> %H A322799 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Number</a> %H A322799 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A322799 G.f.: 1/(1 - Sum_{k>=1} x^(k*(5*k-3)/2)). %p A322799 h:= proc(n) option remember; `if`(n<1, 0, (t-> %p A322799 `if`(t*(5*t-3)/2>n, t-1, t))(1+h(n-1))) %p A322799 end: %p A322799 a:= proc(n) option remember; `if`(n=0, 1, %p A322799 add(a(n-i*(5*i-3)/2), i=1..h(n))) %p A322799 end: %p A322799 seq(a(n), n=0..60); # _Alois P. Heinz_, Dec 28 2018 %t A322799 nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(k (5 k - 3)/2), {k, 1, nmax}]), {x, 0, nmax}], x] %Y A322799 Cf. A000566, A006456, A023361, A181324, A279012, A279280, A322798, A322800. %K A322799 nonn %O A322799 0,8 %A A322799 _Ilya Gutkovskiy_, Dec 26 2018