This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322836 #68 Mar 05 2021 09:36:20 %S A322836 1,1,0,1,1,-1,1,2,1,0,1,3,7,1,1,1,4,17,26,1,0,1,5,31,99,97,1,-1,1,6, %T A322836 49,244,577,362,1,0,1,7,71,485,1921,3363,1351,1,1,1,8,97,846,4801, %U A322836 15124,19601,5042,1,0,1,9,127,1351,10081,47525,119071,114243,18817,1,-1 %N A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k. %H A322836 Seiichi Manyama, <a href="/A322836/b322836.txt">Antidiagonals n = 0..139, flattened</a> %H A322836 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %H A322836 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A322836 A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1. %F A322836 A(n,k) = cos(n*arccos(k)). - _Seiichi Manyama_, Mar 05 2021 %F A322836 A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - _Seiichi Manyama_, Mar 05 2021 %e A322836 Square array begins: %e A322836 1, 1, 1, 1, 1, 1, 1, ... %e A322836 0, 1, 2, 3, 4, 5, 6, ... %e A322836 -1, 1, 7, 17, 31, 49, 71, ... %e A322836 0, 1, 26, 99, 244, 485, 846, ... %e A322836 1, 1, 97, 577, 1921, 4801, 10081, ... %e A322836 0, 1, 362, 3363, 15124, 47525, 120126, ... %e A322836 -1, 1, 1351, 19601, 119071, 470449, 1431431, ... %t A322836 Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Amiram Eldar_, Dec 28 2018 *) %o A322836 (PARI) T(n,k) = polchebyshev(n,1,k); %o A322836 matrix(7, 7, n, k, T(n-1,k-1)) \\ _Michel Marcus_, Dec 28 2018 %o A322836 (PARI) T(n, k) = round(cos(n*acos(k)));\\ _Seiichi Manyama_, Mar 05 2021 %o A322836 (PARI) T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ _Seiichi Manyama_, Mar 05 2021 %Y A322836 Mirror of A101124. %Y A322836 Columns 0-20 give A056594, A000012, A001075, A001541, A001091, A001079, A023038, A011943(n+1), A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203, A322888, A056771, A322889, A078986, A322890. %Y A322836 Rows 0-10 give A000012, A001477, A056220, A144129, A144130, A243131, A243132, A243133, A243134, A243135, A243136. %Y A322836 Main diagonal gives A115066. %Y A322836 Cf. A323182 (Chebyshev polynomial of the second kind). %K A322836 sign,tabl %O A322836 0,8 %A A322836 _Seiichi Manyama_, Dec 28 2018