This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322842 #26 Nov 26 2020 07:48:02 %S A322842 173,277,457,607,727,929,1087,1129,1181,1223,1237,1307,1423,1433,1447, %T A322842 1493,1523,1549,1597,1613,1627,1811,1861,1973,2011,2063,2137,2297, %U A322842 2347,2377,2399,2423,2677,2693,2753,2767,2797,2819,2851,2917,3023,3313,3323,3449 %N A322842 Primes p such that both p+2 and p-2 are neither prime nor semiprime. %C A322842 Also: Primes p such that both p+2 and p-2 have at least three prime divisors. - _David A. Corneth_, Dec 28 2018 %H A322842 Alois P. Heinz, <a href="/A322842/b322842.txt">Table of n, a(n) for n = 1..10000</a> %p A322842 q:= n-> numtheory[bigomega](n)>2: %p A322842 a:= proc(n) option remember; local p; %p A322842 p:= `if`(n=1, 1, a(n-1)); %p A322842 do p:= nextprime(p); %p A322842 if q(p-2) and q(p+2) then break fi %p A322842 od; p %p A322842 end: %p A322842 seq(a(n), n=1..50); # _Alois P. Heinz_, Dec 28 2018 %t A322842 Select[Prime[Range[1000]], PrimeOmega[#-2] > 2 && PrimeOmega[#+2] > 2&] (* _Jean-François Alcover_, Nov 26 2020 *) %o A322842 (Java) %o A322842 boolean isIsolatedPrime(int num){ %o A322842 int upper = num + 2; %o A322842 int lower = num - 2; %o A322842 return isPrime(num) && %o A322842 !isPrime(upper) && %o A322842 !isPrime(lower) && %o A322842 !isSemiPrime(upper) && %o A322842 !isSemiPrime(lower); %o A322842 } %o A322842 (PARI) is(n) = isprime(n) && bigomega(n + 2) > 2 && bigomega(n - 2) > 2 \\ _David A. Corneth_, Dec 28 2018 %Y A322842 Cf. A000040, A001358, A007510, A134797. %K A322842 nonn %O A322842 1,1 %A A322842 _Kyle Buscaglia_, Cory Baker, Dec 28 2018