cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322843 Composites k such that the concatenation of the prime factors of k, with multiplicity, in some order is divisible by k.

Original entry on oeis.org

24, 44, 52, 105, 114, 152, 176, 348, 378, 474, 548, 576, 612, 636, 1518, 1908, 1911, 2688, 3168, 3204, 3425, 3905, 4704, 5292, 5824, 6372, 7695, 7824, 7868, 7928, 8064, 8208, 8352, 8398, 9072, 10128, 10296, 10302, 12467, 17424, 24424, 25662, 25872, 26712, 26816, 27808, 28749, 29484, 30912, 31356
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 28 2018

Keywords

Comments

If p is a prime with d digits that divides 10^(d+1)+1, then 4*p is in the sequence.

Examples

			52 is in the sequence because 52 = 2*2*13 and 2132 is divisible by 52.
105 is in the sequence because 105 = 3*5*7 and 735 is divisible by 105.
		

Crossrefs

Cf. A002808.

Programs

  • Maple
    filter:= proc(n) local L, P, t;
      if isprime(n) then return false fi;
      L:= map(t -> t[1]$t[2],ifactors(n)[2]);
      ormap(t -> (op(sscanf(cat(op(t)),"%d"))/n)::integer,  combinat:-permute(L))
    end proc:
    select(filter, [$4..50000]);
  • Mathematica
    divQ@n_:=AnyTrue[(FromDigits@Flatten@IntegerDigits@#)&/@ (Permutations@Flatten@(ConstantArray @@#&/@ FactorInteger@n)),Divisible[#, n] &];
    Cases[Range@50000,?(CompositeQ@#&&divQ@# &)] (* _Hans Rudolf Widmer, Jan 15 2024 *)
  • Python
    from sympy import factorint, isprime
    from sympy.utilities.iterables import multiset_permutations as MP
    def ok(n):
        if n < 4 or isprime(n): return False
        mpf = []; [mpf.extend([str(p)]*e) for p, e in factorint(n).items()]
        return any(int("".join(p))%n == 0 for p in MP(mpf))
    print([k for k in range(32000) if ok(k)]) # Michael S. Branicky, Jan 19 2024