This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322845 #29 Aug 27 2024 18:17:44 %S A322845 1,3,2,8,5,9,4,6,7,12,10,13,33,34,43,24,22,45,23,44,38,29,17,50,18,28, %T A322845 39,46,21,25,42,26,20,47,30,16,51,31,15,52,49,19,27,40,37,48,53,14,32, %U A322845 35,11,56,54,55,60,41,36,65,173,182,174,64,291,170,68,287 %N A322845 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms has distinct digits in factorial base. %C A322845 In other words, for any n > 0, a(n) + a(n+1) belongs to A321682. %C A322845 Apparently, all the positive integers appear in the sequence. %C A322845 This sequence has interesting graphical features (see scatterplots in Links section). %C A322845 This sequence is to A321682 what A228730 is to A002113. %H A322845 Rémy Sigrist, <a href="/A322845/b322845.txt">Table of n, a(n) for n = 1..10000</a> %H A322845 Rémy Sigrist, <a href="/A322845/a322845.png">Scatterplot of the first 181425 terms</a> %H A322845 Rémy Sigrist, <a href="/A322845/a322845_1.png">Scatterplot of the first 19958408 terms</a> %H A322845 Rémy Sigrist, <a href="/A322845/a322845.txt">C program for A322845</a> %H A322845 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %e A322845 The first terms, alongside the factorial representation of a(n)+a(n+1), are: %e A322845 n a(n) fact(a(n)+a(n+1)) %e A322845 -- ---- ----------------- %e A322845 1 1 (2,0) %e A322845 2 3 (2,1) %e A322845 3 2 (1,2,0) %e A322845 4 8 (2,0,1) %e A322845 5 5 (2,1,0) %e A322845 6 9 (2,0,1) %e A322845 7 4 (1,2,0) %e A322845 8 6 (2,0,1) %e A322845 9 7 (3,0,1) %e A322845 10 12 (3,2,0) %e A322845 11 10 (3,2,1) %e A322845 12 13 (1,3,2,0) %o A322845 (C) // See Links section. %Y A322845 Cf. A002113, A228730, A321682. %K A322845 nonn,base,look %O A322845 1,2 %A A322845 _Rémy Sigrist_, Dec 29 2018