This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322849 #29 Feb 11 2019 19:47:30 %S A322849 1,1,1,1,1,1,1,3,1,2,3,3,1,3,3,2,0,3,5,5,3,3,4,4,3,3,4,6,4,3,6,7,4,4, %T A322849 6,3,3,5,5,6,4,5,7,5,8,8,5,7,6,7,9,9,3,5,10,5,3,11,10,7,8,6,10,7,8,11, %U A322849 8,9,8,7,12,15,10,8,13,7,8,15,8,9,12,14,12,6,13 %N A322849 Number of times 2^k (for k < 4) appears as a substring within 2^n. %C A322849 It appears that the only 0 in this sequence is a(16). %F A322849 a(n) <= A322850(n), for n >= 4. %F A322849 a(n) = A065712(n) + A065710(n) + A065715(n) + A065719(n). - _Michel Marcus_, Dec 30 2018 %e A322849 n = 0, a(n) = 1, 2^n = 1 - solution is 1; %e A322849 n = 1, a(n) = 1, 2^n = 2 - solution is 2; %e A322849 n = 2, a(n) = 1, 2^n = 4 - solution is 4; %e A322849 n = 3, a(n) = 1, 2^n = 8 - solution is 8; %e A322849 n = 4, a(n) = 1, 2^n = 16 - solution is 1; %e A322849 n = 5, a(n) = 1, 2^n = 32 - solution is 2; %e A322849 n = 6, a(n) = 1, 2^n = 64 - solution is 4; %e A322849 n = 7, a(n) = 3, 2^n = 128 - solutions are 1,2,8; %e A322849 n = 14, a(n) = 3, 2^n = 16384 - solutions are 1,4,8; %e A322849 n = 15, a(n) = 2, 2^n = 32768 - solutions are 2,8; %e A322849 n = 16, a(n) = 0, 2^n = 65536 - no solutions. %t A322849 Array[Total@ DigitCount[2^#, 10, {1, 2, 4, 8}] &, 85, 0] (* _Michael De Vlieger_, Dec 31 2018 *) %o A322849 (Python 3.7) %o A322849 import re %o A322849 results = [] %o A322849 start_n = 0 %o A322849 N = 100 %o A322849 current_num = int(pow(2, start_n-1)) # Calculate (n-1) power. Convert to integer for better precision %o A322849 for n in range(start_n, N): %o A322849 if n == 0: %o A322849 current_num = 1 %o A322849 else: %o A322849 current_num += current_num %o A322849 count = 0 %o A322849 for test_str in ["1", "2", "4", "8"]: %o A322849 count += len(re.findall(test_str, str(current_num))) %o A322849 results.append(count) %o A322849 print(results) %o A322849 (PARI) a(n) = #select(x->((x==1) || (x==2) || (x==4) || (x==8)), digits(2^n)); \\ _Michel Marcus_, Dec 30 2018 %Y A322849 Cf. A065712 (1), A065710 (2), A065715 (4), A065719 (8). %Y A322849 Cf. A322849. %K A322849 base,nonn %O A322849 0,8 %A A322849 _Gaitz Soponski_, Dec 28 2018