cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322885 Number of 3-generated Abelian groups of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Álvar Ibeas, Dec 29 2018

Keywords

Comments

Groups generated by fewer than 3 elements are not excluded. The number of Abelian groups with 3 invariant factors is a(n) - A046951(n).
Sum of the first three columns from A249770 (for n > 1).
Dirichlet convolution of A061704 and A010052. Dirichlet convolution of A046951 and A010057.
The number of unordered factorizations of n into biquadratefree power of primes (1 and primes, squares of primes and cubes of primes, A087797). - Amiram Eldar, Jun 12 2025

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      mul(round((t[2]+3)^2/12),t=ifactors(n)[2])
    end proc:
    map(f, [$1..200]); # Robert Israel, May 20 2019
  • Mathematica
    a[n_] := Times @@ (Round[(# + 3)^2/12]& /@ FactorInteger[n][[All, 2]]);
    Array[a, 102] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    a(n) = vecprod(apply(x -> round((x+3)^2/12), factor(n)[, 2])); \\ Amiram Eldar, Jun 12 2025

Formula

Multiplicative with a(p^e) = A001399(e).
Dirichlet g.f.: zeta(s) * zeta(2s) * zeta(3s).
Sum_{k=1..n} a(k) ~ Pi^2*zeta(3)*n/6 + zeta(1/2)*zeta(3/2)*sqrt(n) + zeta(1/3)*zeta(2/3)*n^(1/3). - Vaclav Kotesovec, Feb 02 2019