A322885 Number of 3-generated Abelian groups of order n.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t; mul(round((t[2]+3)^2/12),t=ifactors(n)[2]) end proc: map(f, [$1..200]); # Robert Israel, May 20 2019
-
Mathematica
a[n_] := Times @@ (Round[(# + 3)^2/12]& /@ FactorInteger[n][[All, 2]]); Array[a, 102] (* Jean-François Alcover, Jan 02 2019 *)
-
PARI
a(n) = vecprod(apply(x -> round((x+3)^2/12), factor(n)[, 2])); \\ Amiram Eldar, Jun 12 2025
Formula
Multiplicative with a(p^e) = A001399(e).
Dirichlet g.f.: zeta(s) * zeta(2s) * zeta(3s).
Sum_{k=1..n} a(k) ~ Pi^2*zeta(3)*n/6 + zeta(1/2)*zeta(3/2)*sqrt(n) + zeta(1/3)*zeta(2/3)*n^(1/3). - Vaclav Kotesovec, Feb 02 2019
Comments