cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322887 Decimal expansion of the asymptotic mean value of the exponential abundancy index A051377(k)/k.

This page as a plain text file.
%I A322887 #23 Mar 09 2024 08:18:39
%S A322887 1,1,3,6,5,7,0,9,8,7,4,9,3,6,1,3,9,0,8,6,5,2,0,7,3,1,5,2,3,8,3,8,3,2,
%T A322887 5,9,3,4,4,8,8,0,9,0,1,8,6,3,9,5,7,2,7,6,7,8,9,0,5,2,6,5,4,4,3,1,6,2,
%U A322887 3,9,7,2,0,3,1,5,1,5,2,8,8,3,6,8,7,6,1,3,9,2,7,2,7,4,8,9,8,5,5,2,6,2,1,9,2
%N A322887 Decimal expansion of the asymptotic mean value of the exponential abundancy index A051377(k)/k.
%H A322887 Peter Hagis, Jr., <a href="http://dx.doi.org/10.1155/S0161171288000407">Some results concerning exponential divisors</a>, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-349.
%F A322887 Equals lim_{n->oo} (1/n) * Sum_{k=1..n} esigma(k)/k, where esigma(k) is the sum of exponential divisors of k (A051377).
%F A322887 Equals Product_{p prime} (1 + (1 - 1/p) * Sum_{k>=1} 1/(p^(3*k)-p^k)).
%e A322887 1.13657098749361390865207315238383259344880901863957...
%o A322887 (PARI) default(realprecision, 120); default(parisize, 2000000000);
%o A322887 my(kmax = 135); prodeulerrat(1 + (1 - 1/p) * sum(k = 1, kmax, 1/(p^(3*k)-p^k))) \\ _Amiram Eldar_, Mar 09 2024 (The calculation takes a few minutes.)
%Y A322887 Cf. A013661 (all divisors), A051377.
%K A322887 nonn,cons
%O A322887 1,3
%A A322887 _Amiram Eldar_, Dec 29 2018
%E A322887 a(7)-a(22) from _Jon E. Schoenfield_, Dec 30 2018
%E A322887 More terms from _Amiram Eldar_, Mar 09 2024