This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322892 #9 Dec 30 2018 00:13:42 %S A322892 1,1,9,45,717,6917,154877,2254625,64599201,1267075953,44097148953, %T A322892 1092097482333,44645622936189,1338624157833861,62791851488870493, %U A322892 2213430779241737793,117082536584478235713,4748345510312622896993,279463602946698380026793,12824987274099379222626701,830920299335152521399853101,42586722790649923167650932101,3011022417317079016258969826109,170527854080899363788154404878305 %N A322892 a(n) = [x^n] Product_{k=1..n} (k + x + 2*k*x^2), for n >= 0. %H A322892 Paul D. Hanna, <a href="/A322892/b322892.txt">Table of n, a(n) for n = 0..300</a> %F A322892 a(n+1) = 4*(n+1) * A322893(n) + a(n), for n >= 1. %F A322892 a(n+1) = 2*n*(n+1)^2 * A322894(n) + a(n), for n >= 1. %e A322892 The irregular triangle A322891 of coefficients of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins %e A322892 1; %e A322892 1, 1, 2; %e A322892 2, 3, 9, 6, 8; %e A322892 6, 11, 42, 45, 84, 44, 48; %e A322892 24, 50, 227, 310, 717, 620, 908, 400, 384; %e A322892 120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840; %e A322892 720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080; ... %e A322892 in which the main diagonal forms this sequence. %e A322892 Note that the terms in the secondary diagonal A322893 in the above triangle %e A322892 [1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...] %e A322892 may be divided by triangular numbers n*(n+1)/2 to obtain A322894: %e A322892 [1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...]. %o A322892 (PARI) {A322891(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)} %o A322892 /* Print the irregular triangle */ %o A322892 for(n=0, 10, for(k=0, 2*n, print1( A322891(n, k), ", ")); print("")) %o A322892 /* Print this sequence */ %o A322892 for(n=0, 30, print1( A322891(n, n), ", ")) %Y A322892 Cf. A322891, A322893, A322894. %Y A322892 Cf. A322238 (variant). %K A322892 nonn %O A322892 0,3 %A A322892 _Paul D. Hanna_, Dec 29 2018