cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322902 Numbers whose prime indices are all proper powers of the same number.

This page as a plain text file.
%I A322902 #7 Dec 31 2018 13:18:24
%S A322902 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,37,41,43,47,49,
%T A322902 53,57,59,61,63,64,67,71,73,79,81,83,89,97,101,103,107,109,113,115,
%U A322902 121,125,127,128,131,133,137,139,147,149,151,157,159,163,167,169
%N A322902 Numbers whose prime indices are all proper powers of the same number.
%C A322902 A prime index of n is a number m such that prime(m) divides n.
%C A322902 A proper power of n is a number n^k for some positive integer k.
%C A322902 Also the union of A322903 and A000079.
%e A322902 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (1), (2), (11), (3), (4), (111), (22), (5), (6), (1111), (7), (8), (42), (9), (33), (222).
%t A322902 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A322902 radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
%t A322902 Select[Range[100],SameQ@@radbase/@primeMS[#]&]
%Y A322902 Cf. A001597, A018819, A023893, A023894, A052410, A056239, A072720, A072721,  A302242, A302593, A322900, A322901, A322903.
%K A322902 nonn
%O A322902 1,2
%A A322902 _Gus Wiseman_, Dec 30 2018