This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322903 #5 Dec 31 2018 13:18:31 %S A322903 1,3,5,7,9,11,13,17,19,21,23,25,27,29,31,37,41,43,47,49,53,57,59,61, %T A322903 63,67,71,73,79,81,83,89,97,101,103,107,109,113,115,121,125,127,131, %U A322903 133,137,139,147,149,151,157,159,163,167,169,171,173,179,181,189,191 %N A322903 Odd numbers whose prime indices are all proper powers of the same number. %C A322903 A prime index of n is a number m such that prime(m) divides n. %C A322903 A proper power of n is a number n^k for some positive integer k. %e A322903 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9), (3,3), (2,2,2), (10), (11), (12), (13), (14), (15), (4,4), (16), (8,2), (17), (18), (4,2,2), (19), (20), (21), (22), (2,2,2,2). %t A322903 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A322903 radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]); %t A322903 Select[Range[100],And[OddQ[#],SameQ@@radbase/@primeMS[#]]&] %Y A322903 Cf. A001597, A018819, A023894, A052410, A056239, A072720, A072721, A302593, A322900, A322901, A322902. %K A322903 nonn %O A322903 1,2 %A A322903 _Gus Wiseman_, Dec 30 2018