A322907 Entry points for the 3-Fibonacci numbers A006190.
1, 3, 2, 6, 3, 6, 8, 6, 6, 3, 4, 6, 13, 24, 6, 12, 8, 6, 20, 6, 8, 12, 22, 6, 15, 39, 18, 24, 7, 6, 32, 24, 4, 24, 24, 6, 19, 60, 26, 6, 7, 24, 42, 12, 6, 66, 48, 12, 56, 15, 8, 78, 26, 18, 12, 24, 20, 21, 12, 6, 30, 96, 24, 48, 39, 12, 68, 24, 22, 24, 72, 6
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Jianing Song)
Crossrefs
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
Cf. A006190.
Formula
a(m*n) = a(m)*a(n) if gcd(m, n) = 1.
For odd primes p, a(p^e) = p^(e-1)*a(p) if p^2 does not divide a(p). Any counterexample would be a 3-Wall-Sun-Sun prime.
a(2^e) = 3 if e = 1, 6 if e = 2 and 3*2^(e-2) if e >= 3. a(13^e) = 13^e, e >= 1.
Comments