cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322907 Entry points for the 3-Fibonacci numbers A006190.

Original entry on oeis.org

1, 3, 2, 6, 3, 6, 8, 6, 6, 3, 4, 6, 13, 24, 6, 12, 8, 6, 20, 6, 8, 12, 22, 6, 15, 39, 18, 24, 7, 6, 32, 24, 4, 24, 24, 6, 19, 60, 26, 6, 7, 24, 42, 12, 6, 66, 48, 12, 56, 15, 8, 78, 26, 18, 12, 24, 20, 21, 12, 6, 30, 96, 24, 48, 39, 12, 68, 24, 22, 24, 72, 6
Offset: 1

Views

Author

Jianing Song, Jan 05 2019

Keywords

Comments

a(n) is the smallest k > 0 such that n divides A006190(k).
a(n) is also called the rank of A006190(n) modulo n.
For primes p == 1, 9, 17, 25, 29, 49 (mod 52), a(p) divides (p - 1)/2.
For primes p == 3, 23, 27, 35, 43, 51 (mod 52), a(p) divides p - 1, but a(p) does not divide (p - 1)/2.
For primes p == 5, 21, 33, 37, 41, 45 (mod 52), a(p) divides (p + 1)/2.
For primes p == 7, 11, 15, 19, 31, 47 (mod 52), a(p) divides p + 1, but a(p) does not divide (p + 1)/2.
a(n) <= (12/7)*n for all n, where the equality holds if and only if n = 2*7^e, e >= 1.

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
k = 1: A001175 (periods), A001177 (ranks), A001176 (ratios).
k = 2: A175181 (periods), A214028 (ranks), A214027 (ratios).
k = 3: A175182 (periods), this sequence (ranks), A322906 (ratios).
Cf. A006190.

Programs

  • PARI
    A006190(m) = ([3, 1; 1, 0]^m)[2, 1]
    a(n) = my(i=1); while(A006190(i)%n!=0, i++); i

Formula

a(m*n) = a(m)*a(n) if gcd(m, n) = 1.
For odd primes p, a(p^e) = p^(e-1)*a(p) if p^2 does not divide a(p). Any counterexample would be a 3-Wall-Sun-Sun prime.
a(2^e) = 3 if e = 1, 6 if e = 2 and 3*2^(e-2) if e >= 3. a(13^e) = 13^e, e >= 1.